Central and Peripheral Nervous System Demyelination Following Mycoplasma Pneumonia Infection With Review of Literature

Brian Miller DO
Lehigh Valley Health Network, Brian.Miller@lvhn.org

Andres Zirlinger MD
Lehigh Valley Health Network, Andres.Zirlinger@lvhn.org

Follow this and additional works at: http://scholarlyworks.lvhn.org/medicine
Part of the Medical Sciences Commons, and the Neurology Commons

Published In/Presented At

This Poster is brought to you for free and open access by LVHN Scholarly Works. It has been accepted for inclusion in LVHN Scholarly Works by an authorized administrator. For more information, please contact LibraryServices@lvhn.org.
Objective

Describe the rare occurrence of a combined central and peripheral nervous system demyelination in a serologically positive Mycoplasma pneumoniae (M. pneumoniae) patient.

Case Presentation

A previously healthy 18-year-old white male presented with a dull headache, upper thoracic and lower cervical area pain, as well as progressive upper and lower extremity weakness. Two weeks prior to this event, he experienced a non-productive cough, which was persistent and lasted for one week. Upon physical examination, there was decreased sensitivity from the level of T3 down. Proximal and distal motor weakness was evident on muscle testing. The upper extremities displayed no movement against gravity. Patellar and ankle reflexes were absent. Initial laboratory results showed a complete blood count and complete metabolic panel within normal limits, with the exception of 93% neutrophils and 6% lymphocytes. A cerebral spinal fluid (CSF) analysis on admission showed 32 mg/dL protein (normal 0 to 60 mg/dL), 67 mg/dL glucose (normal 40 to 53 mg/dL), and zero white blood cells. A CSF specimen for bacterial culture was negative. A lymphocyte. A cerebral spinal fluid (CSF) analysis on admission showed 32 mg/dL protein (normal 0 to 60 mg/dL), 67 mg/dL glucose (normal 40 to 53 mg/dL), and zero white blood cells. A CSF specimen for bacterial culture was negative.

His hospitalization was complicated by ventilator-dependent hypoxia and exhaustion requiring intubation and mechanical ventilation. The patient initially responded to intubation and mechanical ventilation with eventual tracheostomy. His hospitalization was complicated by ventilator-dependent hypoxia and exhaustion requiring intubation and mechanical ventilation. The patient initially responded to intubation and mechanical ventilation with eventual tracheostomy.

The patient's neurologic status rapidly deteriorated with worsening lower extremity weakness. Plasmapheresis therapy was initiated for suspected recent/current infection. Results of an electromyogram (EMG) were consistent with a predominant axonal demyelinating peripheral neuropathy. A cervical MRI displayed multiple areas of pathologic enhancement from C4 through T1, with a predominantly axonal demyelinating peripheral neuropathy. A cervical MRI displayed multiple areas of pathologic enhancement from C4 through T1.

The pathogenesis of central nervous system disease secondary to M. pneumoniae infection remains unknown. There are three major categories that attempt to identify the pathogenesis of neurologic complications associated with M. pneumoniae infection. The first pathomechanism is classified as a direct-type which involves local site inflammation and distal motor weakness was evident on muscle testing. The upper extremities displayed no movement against gravity. Patellar and ankle reflexes were absent. Initial laboratory results showed a complete blood count and complete metabolic panel within normal limits, with the exception of 93% neutrophils and 6% lymphocytes. A cerebral spinal fluid (CSF) analysis on admission showed 32 mg/dL protein (normal 0 to 60 mg/dL), 67 mg/dL glucose (normal 40 to 53 mg/dL), and zero white blood cells. A CSF specimen for bacterial culture was negative. A lymphocyte.

The third category refers to an indirect-type of mechanism that causes inflammation through autoimmunity, immune complexes, and allergies. The next category encompasses vascular occlusions which predispose the patient to either a thrombosis or vasculitis. Serology is commonly used for diagnosing M. pneumoniae. While the sensitivity and specificity of serology is high, this method of testing can be time consuming and interfered with by cross-reactions [3,16]. Polymerase chain reaction (PCR) testing is another diagnostic approach. PCR is beneficial because it does not require viable microorganisms and it can analyze histological specimens, fluid, and serum with rapid results. The disadvantage of PCR is that it has the tendency to overestimate the incidence of M. pneumoniae [3,17].

Discussion

M. pneumoniae is associated with a wide spectrum of neurologic complications. These clinical manifestations range in severity and have been documented primarily through case reports within the medical literature. Neurologic diseases associated with M. pneumoniae include encephalopathy, meningoencephalitis, transverse myelitis, cerebellar ataxia, cerebellar infarction, optic neuritis, cranial nerve palsies, polyradiculitis, peripheral neuropathy, Guillain-Barré syndrome, and psychosis [2,7]. Central and peripheral nervous system involvement occurs in approximately 0.01-4.8% of patients infected with M. pneumoniae [2]. However, the overall incidence of neurologic complications may be lower than expected, given that only a minority of M. pneumoniae patients have a confirmed infection and are hospitalized [8,9].

The pathogenesis of central nervous system disease secondary to M. pneumoniae infection remains unknown. There are three major categories that attempt to identify the pathogenesis of neurologic complications associated with M. pneumoniae infection. The first pathomechanism is classified as a direct-type which involves local site inflammation and distal motor weakness was evident on muscle testing. The upper extremities displayed no movement against gravity. Patellar and ankle reflexes were absent. Initial laboratory results showed a complete blood count and complete metabolic panel within normal limits, with the exception of 93% neutrophils and 6% lymphocytes. A cerebral spinal fluid (CSF) analysis on admission showed 32 mg/dL protein (normal 0 to 60 mg/dL), 67 mg/dL glucose (normal 40 to 53 mg/dL), and zero white blood cells. A CSF specimen for bacterial culture was negative. A lymphocyte.

• The treatment choice for neurologic manifestations in a confirmed M. pneumoniae patient remains undefined. The variability in treatments stems from the ambiguity of the bacteria’s pathogenesis, small number of affected patients, and lack of controlled clinical trials. A combination of antibiotics, corticosteroids, and plasmapheresis is commonly utilized in this patient population.

Conclusion

M. pneumoniae remains a common respiratory pathogen that is capable of causing a wide-spectrum of extrapulmonary complications. Neurologic disease occurs more frequently with severe complications in comparison to other nonpulmonary manifestations of M. pneumoniae infection. Timely diagnosis and treatment is hindered by the lack of a clearly defined pathogenesis, sensitivity and specificity of available diagnostic techniques, and clinical trials to assess therapeutic treatment options. Recognition of central and peripheral nervous system demyelination in association with respiratory tract symptoms should prompt serological and PCR investigation for M. pneumoniae.