A Qualitative Review of Differential Diagnosis Generators

William Bond MD, MS
Lehigh Valley Health Network, University of South Florida, william.bond@osfhealthcare.org

Linda M. Schwartz MDE, AHIP, CM
Lehigh Valley Health Network, linda_m.schwartz@lvhn.org

Kevin R. Weaver DO
Lehigh Valley Health Network, kevin_r.weaver@lvhn.org

Donald Levick MD, MBA
Lehigh Valley Health Network, donald.levick@lvhn.org

Michael Guliano MD, MEd, MHPE

See next page for additional authors

Follow this and additional works at: https://scholarlyworks.lvhn.org/emergency-medicine

Part of the Emergency Medicine Commons, Health and Medical Administration Commons, Health Information Technology Commons, Management Sciences and Quantitative Methods Commons, and the Medical Education Commons

Published In/Presented At

This Poster is brought to you for free and open access by LVHN Scholarly Works. It has been accepted for inclusion in LVHN Scholarly Works by an authorized administrator. For more information, please contact LibraryServices@lvhn.org.
Authors
William Bond MD, MS; Linda M. Schwartz MDE, AHIP, CM; Kevin R. Weaver DO; Donald Levick MD, MBA; Michael Guliano MD, MEd, MHPE; and Mark L. Graber MD

This poster is available at LVHN Scholarly Works: https://scholarlyworks.lvhn.org/emergency-medicine/163
A Qualitative Review of Differential Diagnosis Generators

William F. Bond, MD, MS,1 Linda M. Schwartz, MDE,1 Kevin R. Weaver, DO,1 Donald Levick MD, MBA;1 Michael Giuliano, MD, MED, MHPE;2 Mark L. Graber, MD, PhD2

1Lehigh Valley Health Network, Allentown, Pennsylvania; 2Hackensack University Medical Center, Hackensack, NJ; 3VA Medical Center, Northport, New York; 4State University of New York at Stony Brook, Stony Brook, NY

Introduction

Differential diagnosis (DDx) generators have existed for some time, but their use has not been widely adopted in practice. We identified and described the features of a current list of DDx generators.

Methods

We performed a Google search and a literature search using a series of subject headings (Mesh) and keywords to identify programs that qualify as differential diagnosis generators. Through consensus amongst the author group, we identified four factors critical for a differential diagnosis generator to be useful. First, the program needed to present a list of potential diagnoses rather than text or article references. Second, the program must rank or indicate critical diagnoses that need to be considered or eliminated. Third, the program needed to accept at least two signs, symptoms or disease characteristics. Finally, the program needed to provide the ability to compare the clinical presentation of the different diagnoses presented. The study was limited to programs providing diagnoses in general medicine. Programs focused on one disease process or clinical specialty were excluded. The study was limited to programs developed for the use of healthcare professionals (HCPs), not patients or consumers. Qualitative evaluation criteria were agreed upon by consensus prior to evaluating their use.

Results

Eleven programs were excluded due to specialty specific focus. Another seven programs were excluded after an initial review for reasons that included: inability to compare diagnoses, to enter two symptoms or characteristics, or to rank diagnoses, and generators that were simplex, and a static tree structure with cross linking of internal references points. Five programs were reviewed with evaluation criteria that are listed in the first column of the results table. When information was not available to the end user, the company producing the software was queried for clarification.

Conclusions:

The programs were useful in presenting and ranking possible diagnoses. Links to both EBM and non-EBM content were plentiful. Our ability to test EHR integration was limited. The DDx generators should prove helpful teaching tools. Use in practice will depend on EHR integration and the number of false alarms generated.