Lehigh Valley Health Network LVHN Scholarly Works

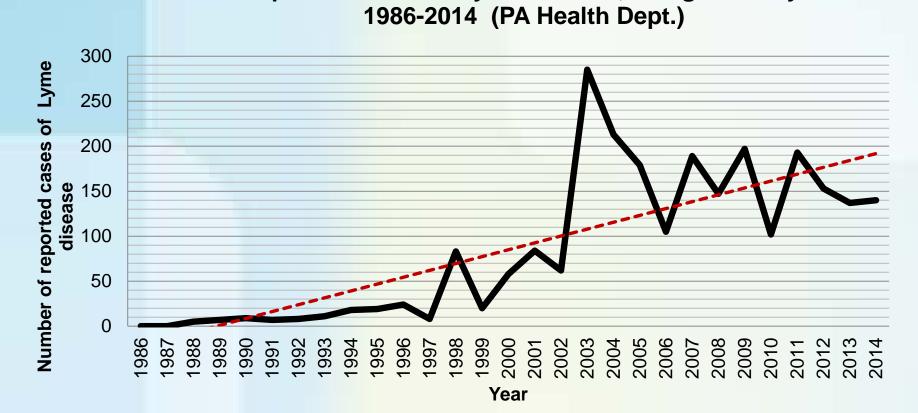
Research Scholars Poster Presentation

Prevalence of Ticks Infected with Human Pathogens in the Lehigh Valley: Molecular Surveillance

Emily Davidson Muhlenberg College

Follow this and additional works at: https://scholarlyworks.lvhn.org/research-scholars-posters Let us know how access to this document benefits you

Published In/Presented At


Davidson, E. (2016). Prevalence of Ticks Infected with Human Pathogens in the Lehigh Valley: Molecular Surveillance. *LVHN Scholarly Works*. Retrieved from https://scholarlyworks.lvhn.org/research-scholars-posters/458

This Poster is brought to you for free and open access by LVHN Scholarly Works. It has been accepted for inclusion in LVHN Scholarly Works by an authorized administrator. For more information, please contact LibraryServices@lvhn.org.

Prevalence of Ticks Infected with Human Pathogens in the Lehigh Valley: Molecular Surveillance

Background

Black-legged ticks (Ixodes scapularis) transmit Borellia burgdorferi, the spirochete that causes Lyme disease. The incidence of Lyme disease cases reported in the Lehigh Valley has increased over the past three decades (PA Health Dept.). Reported Cases of Lyme Disease, Lehigh County

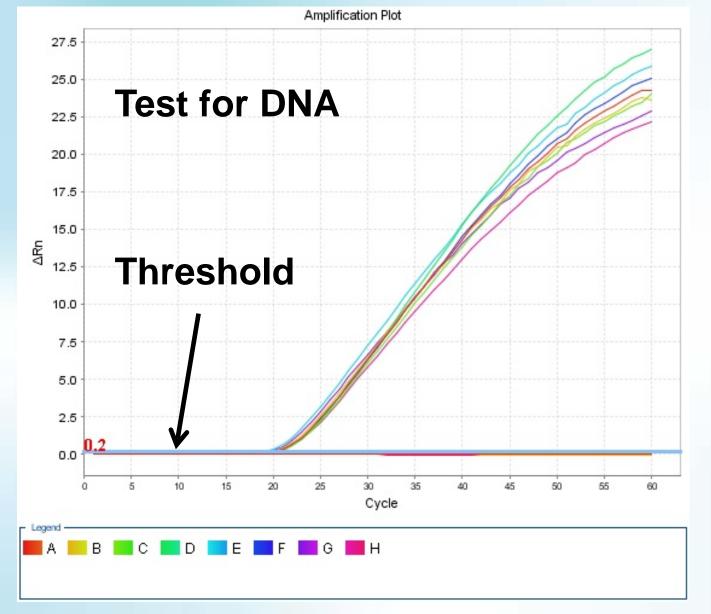
Other infectious diseases transmitted by *Ixodes scapularis* are of concern. These pathogens incude Babesia microti (causing human babesiosis), Anaplasma phagocytophilum (causing human granulocytic anaplasmosis), and Borrelia miyamotoi (causing tick-borne relapsing fever).

Reporting the prevalence of infection in an area can inform health care providers in making time-sensitive decisions involving prophylaxis and treatment in regards to tick-borne infectious disease.

Methods

Extract DNA

Collect Nymphs


 \rightarrow

Over the summers of 2015 and 2016, at least 50 black-legged tick nymphs were tested from each of 11 sites within the Lehigh Valley. More than 1,150 ticks were tested for the presence/absence of human pathogens. The infection rate multiplied by tick abundance can be used to calculate the risk for acquiring a tickborne pathogen, known as the Entomological Risk Index (ERI).

After DNA extraction, samples were tested for the successful extraction of DNA and the four pathogens using Real-Time Polymerase Chain Reaction. Each pathogen was tested for individually using a specific primer and probe set and a negative and positive control.

An established threshold of 0.2 and 40 cycles were used to detect each pathogen. Negative samples were those with abnormal curves and those that did not cross threshold by 0.2.

Conventional PCR and sequencing of PCR products was then used to verify *B*. microti, A. phagocytophilum, and B. miyamotoi.

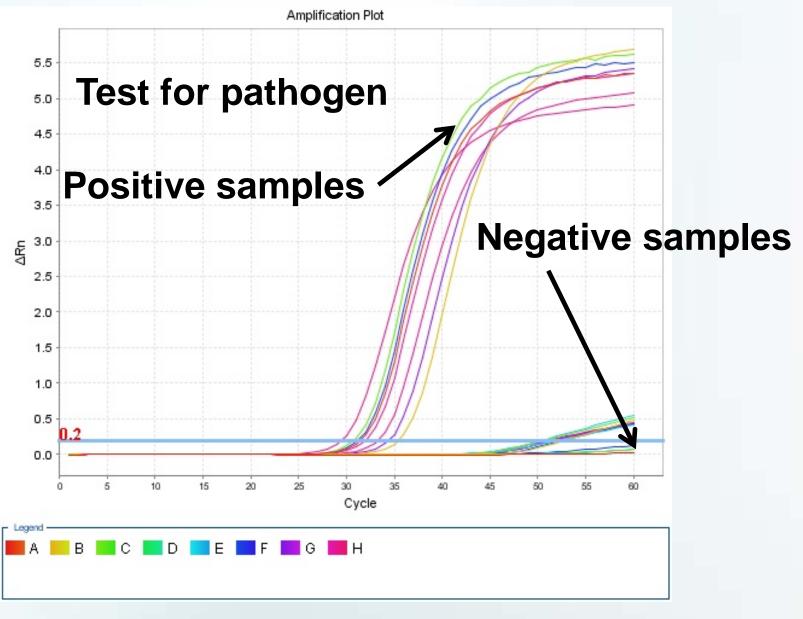
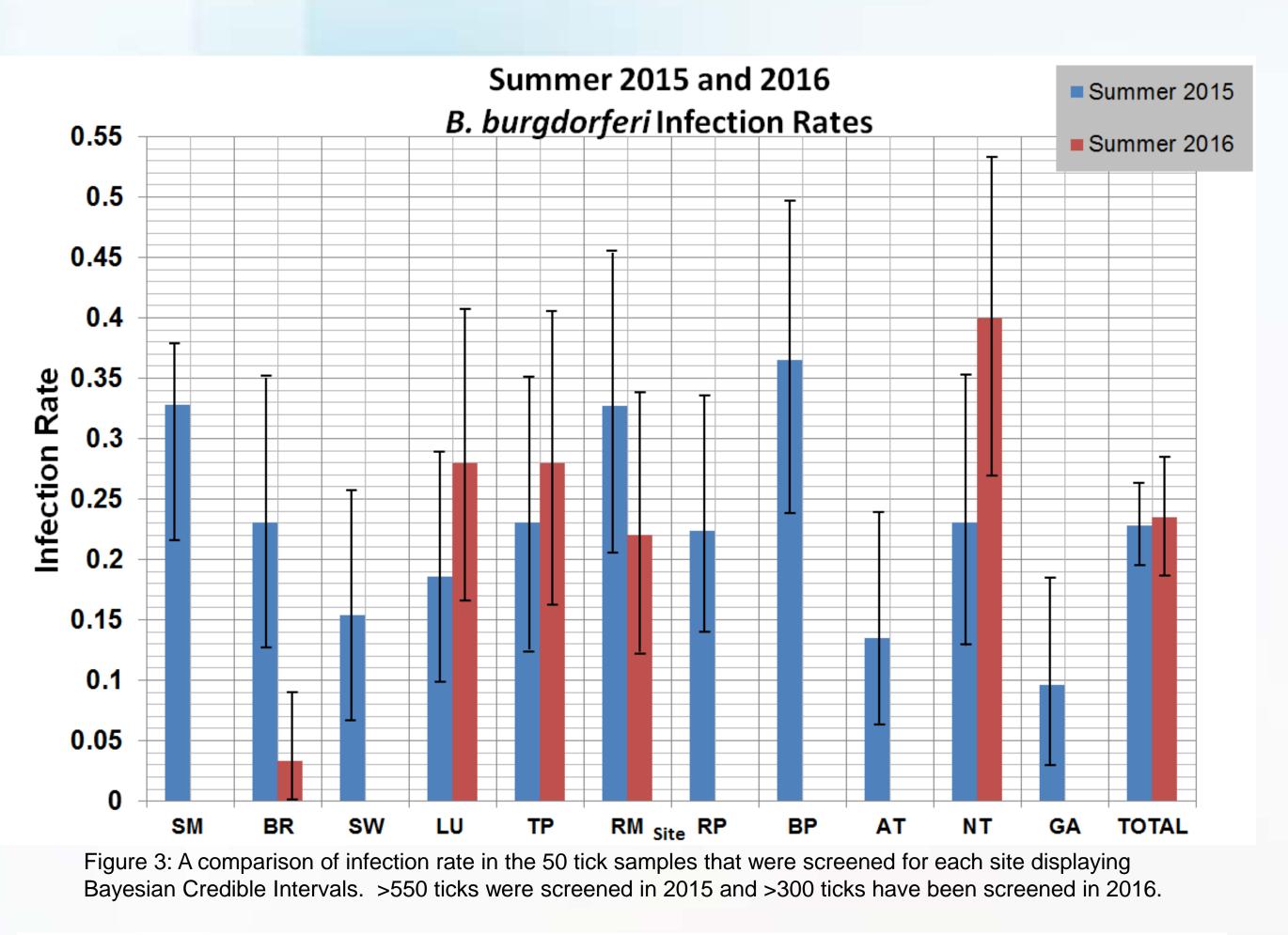


Figure 1:Real-Time PCR for ITS2 confirming the presence of tick DNA

Figure 2:Real-Time PCR for 23s testing for Borellia

Emily Davidson, Muhlenberg College


Lehigh Valley Health Network, Allentown, Pennsylvania

Results

Bayesian approach: Likelihood that the actual value is in an interval that surrounds sample value

Summer 2015 Infection Rates for Individual Pathogens					
				Credible Interval	
Pathogen	Positive	Sample	Rate	Lower	Upper
B. burgdorferi	137	600	0.228	0.196	0.263
B. miyamotoi	0	600	0.000	0.000	0.003
B. microti*	9	600	0.015	0.007	0.026
A. phagocytophilum*	11	600	0.018	0.009	0.030
Unknown <i>Borrelia</i>	1	600	0.002	0.000	0.006

Table 1: Results from the 600 ticks that were collected within the Lehigh Valley and tested for pathogen DNA using qPCR. All credible intervals were calculated using the statistical package R. *Samples have been confirmed by Real-Time PCR and DNA sequencing.

Entomological Risk Index Based on Distance for B. burgdorferi

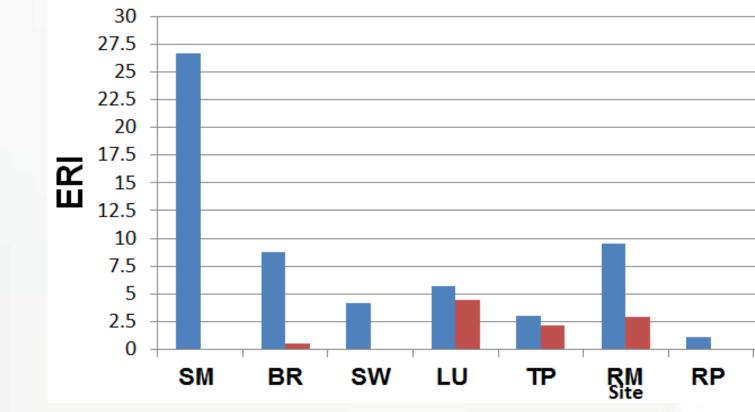


Figure 4: A comparison of ERI for 2016 sites tested to date

Real-Time PCR

 \rightarrow

Summer 2015

Summer 2016

NT GA BP AT

B. burgdorferi infected black-legged ticks were abundant at all 11 study sites. This confirms previous research showing a widespread distribution of *B. burgdorferi* infected ticks in the Lehigh Valley region (Edwards et al. 2015).

No significant difference was observed between the overall infection rate of *B. burgdorferi* in blacklegged tick nymphs collected in 2015 and 2016 (P=0.8, Two-tailed T Test).

The Entomological Risk Index for *B. burgdorferi* are not statistically significant between 2015 and 2016 (P=0.3, Twotailed T Test). Entomological risk incorporates both infection rate and tick abundance data.

Overall B. burgdorferi infection rates for summer 2015 and 2016 are not significantly different from a similar study performed in 2014 at different sites in the Lehigh Valley which were 18.3% (20/109 nymphs, 95% CI: 11.6-26.9%) positive for this pathogen (Edwards et al. 2015).

In summer 2015, B. microti, A. phagocytophilum were detected at low levels and B. miyamotoi was not detected. Ticks collected in Summer 2016 are currently being tested for infection with these pathogens.

The incidence of *B. burgdorferi* infected ticks in the Lehigh Valley may impact clinical decisions. Evidence-based guidelines used by health care providers describe how antimicrobial prophylaxis is recommended for adult patients with a recognized tick bite in areas with local infection rates of *B. burgdorferi* reported to be equal or over 20% (Wormser et al. 2006). In 2015 and 2016, the majority of our study sites within the Lehigh Valley exceeded this level of infection.

Our immediate goal is to complete testing of tick samples that were collected in 2016 and to complete the statistical analysis of our full 2015 and 2016 data set

 Continue vector surveillance of black-legged ticks to track rate of infection, ERI, and tick abundance to compare with cases of reported tick-borne illness.

disease correlate with our ERI estimates.

Dr. Luther V. Rhodes III, MD., Endowed Fund in Infectious Disease Lehigh Valley Research Scholars Program Mrs. Diane Leuthardt The Trainer Summer Research Endowment Dr. Marten Edwards, Muhlenberg College Thomas Yanushefski, Bess Fleischman, Rita Esposito, Julia Leep-Lazar Louise M. Bugbee, Penn State University Extension Service

References: Edwards, Marten J., et al. "Relatively low prevalence of Babesia microti and Anaplasma phagocytophilum in Ixodes scapularis ticks collected in the Lehigh Valley region of eastern Pennsylvania." Ticks and tick-borne diseases 6.6 (2015): 812-819. "Lyme Disease." PA State Department of Health, n.d. Web. 16 July 2016. Wormser, Gary P., et al. "The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America." Clinical Infectious Diseases 43.9 (2006): 1089-1134.

Discussion

Future Work

Analyze whether year to year variations in clinically reported cases of Lyme

Acknowledgements

© 2016 Lehigh Valley Health Network

A PASSION FOR BETTER MEDICINE."

610-402-CARE LVHN.org

