The Utilization of High Frequency Percussive Ventilation to Reduce V-V Extracorporeal Oxygenation Membrane Support (Poster).

Kenneth Miller MEd, RRT-NPS
Lehigh Valley Health Network, Kenneth.Miller@lvhn.org

Kimberly D. Smith RRT-ACCS
Lehigh Valley Health Network, Kimberly_D.Smith@lvhn.org

James K. Wu MD
Lehigh Valley Health Network, james.wu@lvhn.org

Dave Marth RRT
Lehigh Valley Health Network, David.Marth@lvhn.org

Samantha K. Summers BSN
Lehigh Valley Health Network, samantha_k.summers@lvhn.org

See next page for additional authors

Follow this and additional works at: https://scholarlyworks.lvhn.org/patient-care-services-nursing

Part of the [Nursing Commons](https://scholarlyworks.lvhn.org/patient-care-services-nursing)

Published In/Presented At

This Poster is brought to you for free and open access by LVHN Scholarly Works. It has been accepted for inclusion in LVHN Scholarly Works by an authorized administrator. For more information, please contact LibraryServices@lvhn.org.
The Utilization of High Frequency Percussive Ventilation to Reduce V-V Extracorporeal Oxygenation Membrane Support

Kimberly Smith, BA, RRT-ACCS, Kenneth Miller MEd, MSRT, RRT-ACCS, Lisa Lindauer, MD, James K. Wu, MD, David Marth, RRT, Samantha Summers, BSN, Margret Bennett, BSN

Lehigh Valley Health Network, Allentown, Pennsylvania

Materials/Methods and Results

Pre VDR

Prior to placing on HFPV a pressure/volume tool measurement was performed to determine starting airway pressure and PEEP parameters to set on the VDR.

Discussion and Conclusions

DISCUSSION

• HFPV provides both an endobronchial wedge via the percussive rate and an oscillatory plateau via the convective rate.
• Provides an internal mucokinesis and maintains a patent airway
• With this ventilator strategy lower pressures and oxygen delivery can be employed and ECMO parameters can be often reduced.
 • Benefit of lower ECMO FIO2 and sweep increases the ability to match patient’s hemodynamic demand by the delivery of a higher blood flow via the ECMO.
 – Less ECMO chatter
 – Less supplemental fluid replacement

CONCLUSIONS

• HFPV can help ECMO maintain gas exchange for patients at a lower FIO2 and sweep settings.
• More research needs to be conducted to determine this ventilator strategy effect on morbidity and mortality.

High Frequency Percussive Ventilation:

Technologically classified as:
- pneumatically driven
- time cycled
- pressure limited
- bi-phase percussive delivery
- high frequency venturi flow interrupter
- exhalation is passive

Role of HFPV (VDR) in ECMO Patients:

• Maximumized ECMO settings
• Retained secretions
• Inadequate lung inflation
• Constant poor pulmonary mechanics
 CLT<10cmH2O
• Provides lung protection in unilateral lung disease process

Goal of Venous-Venous ECMO:

• Stabilization of gas exchange
• Minimize the risk of ventilator induced injury

Goal of Mechanical Ventilation During ECMO:

• Maintain lung recruitment
• Provide lung protection
• Augmentation of gas exchange if needed

Results

| Patient | Baseline | Pre VDR | Pre VDR | Post VDR | Post VDR | VDR | VDR | VDR | 100% | 60% | 70% | 40% | 50% | 30% | 20% |
|---------|----------|---------|---------|----------|----------|-----|-----|-----|-------|------|------|-----|------|-----|-----|-----|
| 1 | 100% | 6Ipm | 70% | 4Ipm | 40% | 40/16| 40/16|
| 2 | 100% | 7Ipm | 60% | 5Ipm | 50% | 36/20| 36/20|
| 3 | 100% | 8Ipm | 80% | 6Ipm | 50% | 40/16| 40/16|
| 4 | 100% | 7Ipm | 60% | 5Ipm | 50% | 36/20| 36/20|
| 5 | 100% | 7Ipm | 60% | 5Ipm | 50% | 36/20| 36/20|
| 6 | 100% | 8Ipm | 60% | 5Ipm | 50% | 36/20| 36/20|
| 7 | 100% | 6Ipm | 70% | 4Ipm | 50% | 36/20| 36/20|
| 8 | 100% | 6Ipm | 50% | 6Ipm | 50% | 36/20| 36/20|
| 9 | 100% | 6Ipm | 70% | 4Ipm | 50% | 36/20| 36/20|
| 10 | 100% | 7Ipm | 60% | 6Ipm | 50% | 36/20| 36/20|
| 11 | 100% | 8Ipm | 60% | 6Ipm | 50% | 36/20| 36/20|
| 12 | 100% | 8Ipm | 50% | 5Ipm | 50% | 36/20| 36/20|
| 13 | 100% | 7Ipm | 60% | 5Ipm | 50% | 36/20| 36/20|
| 14 | 100% | 6Ipm | 50% | 5Ipm | 50% | 36/20| 36/20|
| 15 | 100% | 8Ipm | 60% | 6Ipm | 50% | 36/20| 36/20|

Goals