Everything but the Kitchen Sink to Treat Refractory Vasospasm: Alternative Treatment Options

Alexandria Limpar BSN, RN, CNRN
Lehigh Valley Health Network, alexandria_c.limpar@lvhn.org

Brittany Boyer BSN, RN, CCRN
Lehigh Valley Health Network, Brittany_K.Boyer@lvhn.org

Follow this and additional works at: https://scholarlyworks.lvhn.org/patient-care-services-nursing

Part of the Nursing Commons

Published In/Presented At

This Poster is brought to you for free and open access by LVHN Scholarly Works. It has been accepted for inclusion in LVHN Scholarly Works by an authorized administrator. For more information, please contact LibraryServices@lvhn.org.
Abstract
The mortality rate of aneurysmal subarachnoid hemorrhage (aSAH) can be as high as 70 percent. Of patients whom survive, 25-30 percent develop some degree of vasospasm up to 21 days after initial onslag. Vasospasm is the second leading cause of death and disability in patients with subarachnoid hemorrhage (SAH). The American Stroke Association (ASA) guidelines for management of SAH recommend oral Nimodipine and endovascular treatments to limit detrimental effects of vasospasm. In patients with severe, unrelenting vasospasm, outcomes within an academic, community Magnet® Hospital have shown promising results when implementing alternative therapies after radiographic evidence that vasospasm is not resolving by endovascular intervention. This presentation details the pathophysiology of vasospasm, outlines ASA guidelines for treatment of aSAH, and uses two case studies to present alternative treatment options including targeted temperature management, intravenous Minirnune, low dose Nicardipine infusions, and intra-theal medication administration.

Objectives
1. Outline the published American Stroke Association guidelines for the management of aSAH.
2. Discuss the pathophysiology of vasospasm in the aSAH patient.
3. Detail two case studies that demonstrate that the addition of targeted temperature management, intravenous Minirnune, intravenous low-dose Nicardipine and intra-theal medication administration may be adjunct therapies in angiographic vasospasm limiting the severity of the spasm and improving patient outcomes.

Management of aSAH
1. aSAH affects 30,000 people annually in the United States.
 a. Location of aneurysm is a prognostication of survival and potential neurological deficits
 b. Clinical manifestations and diagnosis of aSAH
 i. Complaint of "worst headache of my life"
 ii. Sentinel bleed or warning leak
 c. Surgical clipping in patients with large (>50 mL)
 d. Surgical clipping recommended for wide base aneurysm
 e. Endovascular coiling patients > 70 years of age
 f. Endovascular coiling consideration in aneurysms if in the basilar apex

2. Management of cerebral vasospasm and delayed cerebral ischemia
 a. Oral Nimodipine should be administered to all patients with aSAH
 b. Maintenance of euvolemia and circulating blood volume
 c. Induction of hemodynamic augmentation to improve cerebroplasia
 d. Cerebral angioplasty and/or intra-arterial vasodilation

Management of Cerebral Vasospasm and Delayed Cerebral Ischemia
1. Any neurological deterioration presumed to be related to ischemia that lasts for more than one hour
 a. Angiographic narrowing of arteries
 b. Elevated cerebral blood flow velocities
 c. Occurs 7 to 10 days after rupture and resolves spontaneously after 21 days
 d. Major cause of death and disability

2. Oxyhemoglobin comes in contact with the arterial side of a vessel
 a. Depletion of nitric oxide causes cerebral vasodilation
 b. Hemi-craniotomy with external ventricular device (EVD)
 c. Symptomatic vasospasm on day #4
 i. Intra-arterial Verapamil administration
 ii. Symptomatic vasospasm of internal carotid arteries and middle cerebral arteries
 iii. Daily to Interventional Radiology
 iv. Vasospasm cerebral edema unrelenting leading to adjustment treatment options
 i. Intrathecal nicardipine
 ii. Serum NA goal 155-160
 iii. Intravenous cooling
 iv. Low dose Nicardipine infusion
 v. Intravenous Minirnune infusion
 vi. Medically induced (perpetuusfurtus) coma on day #16
 d. Free radical oxidation of bilirubin stimulates vasosconstruction
 e. Inflammation and leukocyte adherence to the vascular endothelium
 f. Presence of cytokine proteins in the vasculature

Case Studies
1. Hunt and Hess grade 4, modified Fisher 4 subarachnoid hemorrhage secondary to a ruptured left anterior communicating artery aneurysm in a 29-year-old female
 a. Coil assisted embolization with secured aneurysm
 b. Hemi-craniotomy with external ventricular device (EVD)
 c. Symptomatic vasospasm on day #4
 i. Intra-arterial Verapamil administration
 d. Free radical oxidation of bilirubin stimulates vasosconstruction
 e. Inflammation and leukocyte adherence to the vascular endothelium
 f. Presence of cytokine proteins in the vasculature

2. Hunt and Hess grade 3, modified Fisher 4 subarachnoid hemorrhage secondary to a ruptured posterior communicating aneurysm rupture in a 57-year-old female
 a. Aneurysm clipped on day #1
 b. Vasospasm on hospital day #4
 i. Middle cerebral artery and bilateral internal carotid artery
 c. Interventional Radiology for IV Verapamil X10 consecutive days
 d. Received continuous low dose Nicardipine as an adjunct therapy
 e. Received intra-vascular targeted temperature management
 f. Chemically paralyzed to optimize ventilation and impact shiver threshold
 g. Tracheostomy and percutaneous endoscopic gastrostomy (PEG) on day #27
 h. Transfer to medical-surgical unit on hospital day #34
 i. Transfer to inpatient rehabilitation unit on day #45
 j. Discharge home with husband on day #166

There are no relevant conflicts of interest to disclose.