Effect of Oral Ferric Maltol on Iron Parameters in Patients with Chronic Kidney Disease (CKD) and Varying Degrees of Inflammation; a Randomized, Controlled Trial

Nelson Kopyt DO, FASN, FACP
Lehigh Valley Health Network, Nelson.Kopyt@lvhn.org

Follow this and additional works at: https://scholarlyworks.lvhn.org/medicine

Published In/Presented At
Kopyt, N. (2018, October 26). Effect of Oral Ferric Maltol on Iron Parameters in Patients with Chronic Kidney Disease (CKD) and Varying Degrees of Inflammation; a Randomized, Controlled Trial. Poster Presented at: ASN Kidney Week, San Diego, CA.

This Poster is brought to you for free and open access by LVHN Scholarly Works. It has been accepted for inclusion in LVHN Scholarly Works by an authorized administrator. For more information, please contact LibraryServices@lvhn.org.
Intravenous iron administration can be inconvenient and costly, with 53.3% of patients reporting concerns about the administration process. All iron parameters were significantly improved with ferric maltol administration, indicating its effectiveness in treating iron deficiency anemia (IDA) in patients with CKD.

Some patients with CKD have chronic inflammation, which can reduce the absorption and utilization of iron. Ferric maltol is an oral iron-replacement therapy that is tolerable and effective, with 70.1% of patients completing 16 weeks of treatment. Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.

Iron-deficiency anemia (IDA) is a leading cause of morbidity and mortality in patients with CKD. Patients with CKD and IDA would therefore benefit from an oral iron-replacement therapy that is tolerable and effective.

Ferric maltol improves iron storage parameters—ferritin and TSAT—by reducing inflammation as assessed by high-sensitivity C-reactive protein (hsCRP) levels. Before absorption, the ferric iron and maltol complex remains intact in the intestinal lumen, minimizing the risk of GI toxicity associated with free radicals.

Iron transporter mechanism

Metabolism of ferric maltol

• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol improves iron storage parameters—ferritin and TSAT—by reducing inflammation as assessed by high-sensitivity C-reactive protein (hsCRP) levels.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.
• Ferric maltol is a sugar derivative found in many food products; it strongly chelates iron in the enterocyte, minimizing the risk of GI toxicity associated with free radicals.