Feb 21st, 7:40 PM - 8:10 PM

Diagnosis and Treatment Options for Multiple Sclerosis

Gary Clauser MD
Lehigh Valley Health Network, gary.clauser@lvhn.org

Follow this and additional works at: http://scholarlyworks.lvhn.org/neurology_update_non_neurologist

Part of the Diagnosis Commons, Nervous System Diseases Commons, Neurology Commons, and the Neurosciences Commons

This Presentation is brought to you for free and open access by the Conferences and Symposia Collection at LVHN Scholarly Works. It has been accepted for inclusion in Neurology Update for the Non-Neurologist by an authorized administrator of LVHN Scholarly Works. For more information, please contact LibraryServices@lvhn.org.
Diagnosis and Treatment Options for MS

Gary Clauser, M.D.
Lehigh Neurology/LVPG
History of MS

- Thought to be immune mediated
 - Virally triggered in genetically susceptible host

- Treatments
 - Acute attacks: ACTH in 1970s–1980s
 - Disease modification in 1990s
 - Symptomatic management

- Diagnostic tests
 - MRI in 1980s
 - New MRI techniques
What We Know Now...

- Most common neurological disease of young adults
- Chronic disease of the CNS
 - Inflammation, demyelination, axonal degeneration
- Approximately 350,000 cases in US
- 2/3 of MS patients are women
- Associated with Northern European ancestry
- Age of onset: 15–55
 - Usually diagnosed in 20s–30s
Statistics

■ Worldwide distribution
 - High prevalence 30+/100,000
 • Northern US and Canada
 • Most of Europe
 • Southern Australia
 • New Zealand
 • Northeast Russia
Pathology

- White matter lesions in CNS
 - Surrounded by plasma cells, immunoglobulins, macrophages, and lymphocytes

- Grey Matter
 - Cortex, Basal Ganglia

- Inflammation
 - Myelin injury and destruction
 - Axonal injury and destruction
Demyelination and Axonal Transection

Disease Course

- 85%–90% of patients present with a RR pattern of neurological symptoms

- 10%–15% never have relapses (PP)

- Historically - After approximately 10 years, nearly 50% of RR patients will show a progressive pattern to their disease
 - This percentage grows with time
 - Now believed longer than 10 years due to earlier treatment
Disease Courses in MS

- **RRMS**
- **SPMS**
- **PPMS**
- **PRMS**

Natural History Over Time

Disease Type at Diagnosis
- RRMS: 85%
- PPMS: 15%

Disease Type at 11–15 Years After Diagnosis (Among Those With RRMS at Diagnosis)
- SPMS: 42%
- RRMS: 58%
Symptoms vary widely in incidence and severity.

Symptoms:
- Fatigue
- Sensory disturbances
- Visual disturbances
- Elimination dysfunction
- Gait Disturbances
- Spasticity
- Pain
- Tremor
- Cognitive
Diagnosis of MS

- Basic principles
 - Demographic profile
 - Female, Caucasian, young adult
 - Clinical presentation
 - Symptomatic disease, Abnormal exam
 - Flare or attack = 24 hours – up to 3 or more weeks
 - Laboratory profile
 - MRI
 - CSF
 - Evoked potentials
 - Exclusion of other diagnoses
MS - Clinical Presentation

- Sensory tracts
 - 21%–55% of patients
 - Most common presenting symptom
 - Tingling, burning, “Novocaine-like,” band-like, squeezing
 - Lhermitte’s
 - Neuritic pain
 - Exam - Diminished vibratory sensation
 - Exam - Impaired position sense
 - “Useless hand” syndrome
 - Sensory loss, loss of position sense
 - Mobility preserved
Corticospinal tracts

- 32%–41% of patients
 - Heaviness, weakness
 - Abnormal DTRs
 - Positive Babinski response
 - Spastic limb weakness
MS - Clinical Presentation

- **Brainstem**
 - **Eye movement abnormalities**
 - Diplopia at onset in about 7% of patients
 - Nystagmus, INO
 - Bilateral INO is almost pathognomonic for MS
 - **Vertigo**
 - **Infrequently**
 - Dysarthria
 - Peripheral 7th
 - Hearing loss and tinnitus
MS - Clinical Presentation

Visual pathway

- **Optic neuritis**
 - Presenting symptom in up to 25% of patients
 - Dimming or visual loss
 - Loss of color vision
 - Visual field defect

Cerebellar

- Gait ataxia, limb ataxia, tremor
MS - Clinical Presentation

- Fatigue
 - Present in up to 90% of patients with long-term MS
 - Can be seen with any Flare/Attack

- “Elimination” brainstem/spinal cord
 - Occasionally present at onset of disease
 - Bladder urgency, frequency, hesitation, nocturia
 - Bowel constipation, infrequently involuntary bowel movements
MS Diagnosis

- Posner Criteria (1983)
 - Two clinical attacks in Space and Time
 - No other explanation
 - Paraclinical Evidence (VEP and CSF)
 - MRI not available

- McDonald Criteria 2001
- McDonald Criteria revised in 2005
- McDonald Criteria revised in 2010
McDonald Diagnostic Criteria

- Preserve traditional diagnostic criteria of 2 attacks of disease separated in space and time
 - Must be no better explanation
 - Add specific MRI criteria, CSF findings, and analysis of evoked potentials as means of identifying the second “attack”

- Conclude that the outcome of the diagnostic workup should yield 1 of 3 outcomes:
 - MS
 - Possible MS
 - Not MS
McDonald MRI Criteria - 2005

Abnormal MRI consistent with MS defined as:

- Must have at least 3 of the following:
 - 1 gadolinium-enhancing lesion or 9 hyperintense lesions if no gadolinium-enhancing lesion
 - 1 or more infratentorial lesions
 - 1 or more juxtacortical lesions
 - 3 or more periventricular lesions
 - 1 cord lesion = 1 brain lesion
McDonald MRI Criteria

- Gd-enhancing
- T2 hyperintense
- Infratentorial
- Juxtacortical
- Periventricular
- Spinal Cord
2010 Revised McDonald MRI Criteria

- Abnormal MRI consistent with MS defined as:
 - **Dissemination in Space**
 - >= 1 lesion at least 2 of the 4 characteristic areas: Periventricular, juxtacortical, infratentorial, spinal cord
 - **Dissemination in Time**
 - Enhancing and Non-Enhancing lesions
 - New Lesion
 - New Clinical Attack

** LP and other Ancillary tests not required if no other explanation and above clearly seen

** Can make diagnosis with single attack/first MRI
McDonald MRI Criteria

Gd-enhancing

T2 hyperintense

Infratentorial

Juxtacortical

Periventricular

Spinal Cord
Other Paraclinical Evidence

- Abnormal CSF
 - Oligoclonal IgG bands in CSF and not in serum
 - Or elevated IgG index

- Abnormal evoked potentials (VER, SSEP)
 - Delayed but well-preserved waveform
Differential Diagnosis

- **Infection**
 - Lyme, syphilis, PML, HIV, HTLV-1

- **Inflammatory**
 - SLE
 - Sjögren’s, vasculitis, sarcoidosis, Behçet’s disease

- **Metabolic**
 - B_{12} deficiency, rare familial diseases

- **CNS lymphoma**
- **Degenerative spinal disease**
- **Motor neuron disease**
Serum Testing

- B₁₂, folate
- RPR, FTA
- HIV
- HTLV-1
- ANA, SS-A, SS-B
- Antiphospholipid antibodies
- ESR, C-reactive protein
- Thyroid function
- Angiotension-converting enzyme
- Anti-acetylcholine receptor antibodies
- Long-chain fatty acids
MRI in MS

- MRI Brain
 - Classic Lesions = 90%–95% sensitivity/specificity
 - Newer data on Grey Matter Lesions
 - Brain Atrophy

- MRI Spinal Cord
 - Lesions seen in 50%–75% of cases
 - <= 1-2 vertebral levels
 - >= 3 continuous lesions – think NeuroMyelitis Optica
T1-Weighted Images
T1 Hypointensities

- “Black holes”
 - Thought to be areas of axonal loss
 - Can be “black holes” that are temporary with a new lesion

- Black holes not associated with a new lesion are thought to be areas of permanent damage
T1 Black Holes
T2-Weighted Images

Conventional T2

FLAIR
FLAIR Image
FLAIR Image and T1 Black Holes
Spinal MRI in MS

- Spinal cord lesions in 75% of MS patients
- Predominantly in C-spine
- Usually dorsolateral or central and 0.5 cm by 1–2 cm, and 1–2 vertebral segments
- Less likely to enhance or cause cord swelling
- More likely to cause progressive disease
- T2 less predictive of disability than atrophy
Cord Lesion
Examples of BPF in MS

MS Diagnosis

- Two “other” Categories
 - Clinically Isolated Syndrome
 - First Clinical Attack
 - MRI with 1 or 2 lesions
 - Radiological Isolated Syndrome
 - MRI with “Classic” MS lesions
 - No clinical history
 ** VEP, Cervical Spine, +/- LP
Radiological Evidence

- Natural history studies demonstrate that up to 88% of patients with 1 attack and MRI lesions go on to convert to CDMS.1,2

<table>
<thead>
<tr>
<th>Study</th>
<th>Normal MRI</th>
<th>Abnormal MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brex et al.</td>
<td>19%</td>
<td>88%</td>
</tr>
<tr>
<td>Optic Neuritis Study Group (final follow-up–15 y)3</td>
<td>25%</td>
<td>72%</td>
</tr>
<tr>
<td>Minneboo et al.</td>
<td>24%</td>
<td>72%</td>
</tr>
<tr>
<td>Tintore et al.</td>
<td>8%</td>
<td>63%</td>
</tr>
</tbody>
</table>

Development of CDMS, stratified for baseline MRI findings. Modified from Miller et al.

CDMS = clinically definite multiple sclerosis.
Relationship Between No. of T2 Lesions at Baseline and Clinical Outcome by 20 Years in CIS Patients

20-Year Follow-Up of Prospectively Recruited CIS Cohort

<table>
<thead>
<tr>
<th>Baseline Lesions</th>
<th>CDMS at 20 yrs</th>
<th>EDSS >3 at 20 yrs</th>
<th>EDSS ≥6 at 20 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (n = 34)</td>
<td>7 (21%)</td>
<td>9 (26%)</td>
<td>2 (6%)</td>
</tr>
<tr>
<td>1-3 (n = 22)</td>
<td>18 (82%)</td>
<td>8 (36%)</td>
<td>4 (18%)</td>
</tr>
<tr>
<td>4-9 (n = 20)</td>
<td>17 (85%)</td>
<td>10 (50%)</td>
<td>7 (35%)</td>
</tr>
<tr>
<td>10+ (n = 31)</td>
<td>25 (81%)</td>
<td>20 (65%)</td>
<td>14 (45%)</td>
</tr>
</tbody>
</table>

Proposed Algorithm for Evaluating Treatment Response in RRMS

1. Begin DMT
2. MRI and clinical assessments at 6-12 months
 - Negative MRI result
 - Periodic clinical and MRI assessment
 - Active MRI result
 - Relapses and/or disease progression
 - Consider change of therapy
 - No relapses and no disease progression
 - Close clinical and MRI monitoring
MS Treatment - Injectables

- **Interferons**
 - BetaSeron (QOD,SQ)
 - Avonex (Weekly, IM)
 - Rebif (TIW, SQ)
 - Extavia (QOD,SQ)
- **Side Affects**
 - Flu like symptoms, Fatigue, Headache, Injection Problems

- **Treatment tricks**
 - Pre-medicate with Tylenol or Advil
 - Take medication before bed. Can disrupt sleep, so may need morning dosing
 - Determine hours until “worse” flu like symptoms and adjust shot to have them occur when sleeping

- **Labs**
 - LFTs Q6 months; TSH - yearly
MS Treatment - Injectable

- **Copaxone (CoPolymer)**
 - Believed to be equal to Interferons when used early (CIS)
 - Presently given daily - SQ
 - Probable change to every other day (double dose amount) in 2013

- **Side Affects**
 - Injection site reaction of itching at site
 - Chest Pain (rare)
MS Treatment - Infusion

- **Tysabri**
 - Used for failing 1st line
 - Aggressive 1st line
 - Progression while on 1st line
 - Connected to PML
 - 24 months use
 - Prior Chemotherapy
 - JC virus +
 - Can have steroids 2 weeks before infusions for flares
 - Continued reports of improving fatigue, cognitive and strength with starting
MS Treatment - Infusion

- **Tysabri**
 - **Labs/Imaging**
 - Check monthly labs, urine at time of infusion
 - Check JC Virus before starting and every 3 months after
 - Available through Quest Labs
 - Check MRI every 6 months JC(+) or yearly JC(-)
Requirements for PML Development:
JCV Mutation

Evidence from multiple patient populations supports the theory that specific JCV mutations contribute to the development of PML.

- **Wild-type / benign JCV**
 - Transmittable form
 - Commonly found in the kidney of healthy patients
 - May replicate periodically

- **Pathogenic JCV**
 - Active variant found in brains of PML patients
 - Contains mutations believed to increase viral replication and pathogenicity
 - Causes destruction of myelin-producing cells of the brain

Viral mutations
Evaluation of JCV DNA Testing

Quantitative PCR testing for JCV DNA

- 1,400 MS patients checked (13,000 samples)
 - Blood Tests
 - <1% and not associated with the development of PML
 - Urine samples
 - 25% Positive (Prior studies = 55%)

1 / 3 patients who developed PML were urinary JCV DNA negative at all time points tested

Results suggested JCV DNA detection in blood or urine is not reliable for assessment of PML risk
Indirect Testing

- Check Anti-JCV Antibodies (serum)
 - Initial exposure to the virus results in formation of anti-JCV antibodies

- Once seropositive, antibodies generally persist even during viral latency

- Currently the test is available through Quest Labs
Anti-JCV Antibody vs. JCV DNA Testing

<table>
<thead>
<tr>
<th>Uses</th>
<th>STRATIFY JCV Test</th>
<th>JCV DNA Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detects past JCV exposure</td>
<td>• Detects past JCV exposure (does not diagnose PML)</td>
<td>• Diagnostic (CSF) for PML</td>
</tr>
<tr>
<td>Can be used for assessment of PML risk</td>
<td></td>
<td>• Denotes JCV actively replicating in the brain</td>
</tr>
<tr>
<td>Diagnostic (CSF) for PML</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denotes JCV actively replicating in the brain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denotes JCV actively replicating in the brain</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test type</th>
<th>• ELISA</th>
<th>• PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>• Blood</td>
<td>• Blood, urine, CSF</td>
</tr>
<tr>
<td>Detects</td>
<td>• Antibodies to JCV</td>
<td>• Presence of viral components (DNA)</td>
</tr>
<tr>
<td>Results indicate:</td>
<td>• Any past exposure to JCV</td>
<td>• JCV exposure, but only when JCV is actively replicating and shedding into test sample</td>
</tr>
</tbody>
</table>
Ongoing Research Evaluation

Among >800 MS patients tested:
- 46% were anti-JCV antibody negative
- 54% were anti-JCV antibody positive

A prospective clinical trial of >30,000 MS patients is ongoing to evaluate STRATIFY JCV to:
- Assess the prevalence of JCV in MS patients
- Determine changes in JCV antibody status over time
- Identify the correlation between JCV positivity and PML development
MS Oral Treatments

- Gilenya – Fingolimod
- Initially investigated to prevent renal allograft rejection
- Chemically modified derivative of a fungal metabolite
 - Studied against current Interferon (injectable) with:
 - 45% reduction in relapse rate compared to Interferon.
MS Oral Treatments

- **Gilena - Fingolimod**
 - **Mechanism of Action**
 - Agonist to S1P receptors
 - When Phosphorylated
 - Gilena acts to sequester circulating lymphocytes into secondary lymphoid organs
 - No effect on lymphocyte induction, proliferation, or memory function
 - Lymphocyte counts decreased by 72-77%
 - Peripheral reduction of
 - CD3+, CD4+, CD8+, - CD45RO+ (memory T cells),
 - CD45RA+ (naive T cells), - CD19+ cells
Gilenya - Cardiac

<table>
<thead>
<tr>
<th>Number (%) of Participants</th>
<th>IFN β-1a 30µg IM Once Weekly</th>
<th>Oral Fingolimod 0.5mg</th>
<th>Oral Fingolimod 1.25mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac Disorder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bradycardia</td>
<td>0</td>
<td>2 (0.5%)</td>
<td>10 (2.4%)</td>
</tr>
<tr>
<td>Second Degree AV Block</td>
<td>0</td>
<td>1 (0.2%)</td>
<td>3 (0.7%)</td>
</tr>
<tr>
<td>First Degree AV Block</td>
<td>0</td>
<td>1 (0.2%)</td>
<td>2 (0.5%)</td>
</tr>
<tr>
<td>Infections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appendicitis</td>
<td>2 (0.5%)</td>
<td>0</td>
<td>2 (0.5%)</td>
</tr>
<tr>
<td>Herpes viral infections</td>
<td>1 (0.2%)</td>
<td>1 (0.2%)</td>
<td>3 (0.7%)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>0</td>
<td>0</td>
<td>2 (0.5%)</td>
</tr>
</tbody>
</table>

* Cardiac Complications with First dose believed due to internalization of SP receptors
MS Oral Therapies
Gilenya (Fingolimod)

- FDA Requirements
 - A. 6 hour Observation with EKG with first dose and prior to leaving
 - Blood pressure every hour
 - B. OCT exam before and at 3-4 months
 - C. Varicella Titer

- MS Center of Lehigh Valley Gilenya Protocol
 - A. 6 hour Telemetry Monitoring
 *Dr. Spikol
 - B. OCT exam before and at 3-4 months
 - C. Varicella Titer
 - D. Cancer Screening
 - Dermatology
 - Male/Female Standard Guidelines
 - Breast, Pelvic, Testicular, Colon
MS Oral Therapies – Aubagio (Teriflunomide)

- Aubagio
 - FDA approved October 2012
 - Active component of Leflunomide

- Major Side Effects
 - Liver Affect
 - Alopecia
 - Birth Defects
Teriflunomide is the active metabolite of leflunomide
- Leflunomide is FDA-approved in adults for the treatment of active rheumatoid arthritis

Teriflunomide is being developed for the treatment of multiple sclerosis:
- Eliminates other metabolites of leflunomide
 - Although it is a minor pathway, these metabolites may themselves have adverse effects
- Avoids the hepatic metabolism of leflunomide to teriflunomide
- Reduces CYP450 involvement compared with leflunomide, which may decrease potentially clinically significant drug–drug interactions
Teriflunomide: Proposed MOA in MS

Teriflunomide selectively and reversibly inhibits DHODH

- a key mitochondrial enzyme in *de novo* pyrimidine synthesis required by rapidly dividing lymphocytes
 - Cystostatic
 - Limit over-activation of the activated and autoimmune Lymphocytes
 - Protective immunity is not significantly affected by Teriflunomide
MS Oral Therapies - Teriflunomide

- **Leflunomide Experience**
 - **Cases of Lymphoma have been seen**
 - However increase in case with all RA treatments (MethoTrexate, Cyclosporin)
 - **Severe Liver Necrosis with fatalities have occurred**
 - Seen within first 6 months of therapy
 - **Severe Infections have been seen**
 - TB, Pneumonia, PCP, Mycotic
Teriflunomide

- TEMSO (Teriflunomide Multiple Sclerosis Oral trial)
 - Decrease in Annual Relapse Rate (vs Placebo)
 - 7 mg dose – 31.2 %
 - 14 mg dose – 31.5 %

- TOWER
 - Decrease in Annual Relapse Rate (vs Placebo)
 - 7 mg – 22.3 %
 - 14 mg – 36.3 %
MS Oral Therapies - DMF

- DMF (dimethyl fumarate)
 - Derived from Fumaderm, an oral therapy of fumaric acid esters
 - Approved to treat psoriasis in Germany

- Initial Proposed FDA approval – December 2013

- Proposed for Mid 2013
 - FDA needed extended time to review Data.
 - Did not require more / additional data
DMF (DiMethyl Fumarate)

- Therapeutic mechanism in MS is speculative
 - Psoriasis Data -
 - Beneficial effect coincides with Lymphocytopenia
 » Decreased by 40%-60%
 - Down-regulation of proinflammatory cytokines
 - Increase in Antiinflammatory cytokine IL-10
 - Upregulation of Nuclear Factor 2
 - Induces Anti-Inflammatory Stress Protein HO-1

- Protective antioxidant pathway in CNS
 - Unpublished data in the EAE model
MS Oral Therapies - DMF

■ DEFINE:
 - Placebo-controlled, 1011 patients
 - Low-dose: 240 mg BID
 - High-dose: 240 mg TID
 - Annualized relapse rate
 - Results
 - Two year ARR –
 - Placebo = 36%, BID = 17%, TID = 19%

■ CONFIRM:
 - High- and low-dose vs Copaxone®
 - Subjects (N~1232): RRMS by MacDonald, EDSS <5
 - Primary outcome: Annualized relapse rate
 - Results
 - Two year ARR –
 - Copaxone = 29%, BID = 22%, TID = 20%
Conclusion

- MRI is now major diagnostic tool
 - Can diagnose with first attack / MRI
 - Clinically Isolated Syndrome and Radiological Isolated Syndrome categories

- New Oral Therapies