Caval Agenesis with Hypoplastic Left Kidney in a Trauma Patient on Warfarin for Deep Vein Thrombosis (Poster)

Ryan A. Lawless MD
Lehigh Valley Health Network, Ryan_A.Lawless@lvhn.org

Dale A. Dangleben MD
Lehigh Valley Health Network, Dale_A.Dangleben@lvhn.org

Follow this and additional works at: http://scholarlyworks.lvhn.org/surgery

Part of the Chemicals and Drugs Commons, Other Medical Specialties Commons, Surgery Commons, and the Trauma Commons

Published In/Presented At

This Poster is brought to you for free and open access by LVHN Scholarly Works. It has been accepted for inclusion in LVHN Scholarly Works by an authorized administrator. For more information, please contact LibraryServices@lvhn.org.
Caval Agenesis with Hypoplastic Left Kidney in a Trauma Patient on Warfarin for Deep Vein Thrombosis
Ryan Lawless, MD, Dale A. Dangleben, MD • LEHIGH VALLEY HEALTH NETWORK, ALLENTOWN, PENNSYLVANIA

INTRODUCTION
In 1891, Wardrop Griffith first reported on a case of inferior caval agenesis. In his case, he reported that the drainage of the lower part of the body was through an enlarged aygous system and the hepatic veins entered the atrium where the IVC typically would.1 The incidence of congenital interruption of the inferior vena cava is quoted to be 0.3-0.6% of the population.2 We report a similar case of a middle-age trauma patient with severe head trauma on coumadin therapy for longstanding deep vein thromboses. The patient was found to continue to have lower extremity DVT while on warfarin after a head bleed, the radiologist was faced with the same issue. A cavagram was performed and was initially interpreted by the radiologist that the patient had caval agenesis with a hypoplastic left kidney. The patient became progressively lethargic from an intraventricular and intraparenchymal hemorrhage.

CASE
This is a 50-year-old male with a past medical history of bilateral lower extremity deep vein thromboses on Coumadin therapy for 20 years who fell down 14 stairs 2 days prior to presentation. On admission, the patient had an initial Glasgow Coma Score (GCS) of 14 secondary to his confusion. Imaging studies revealed an intraventricular and intraparenchymal hemorrhage. The patient was brought to the operating room for hydrocephalus.

During the course of the patient's hospitalization he developed acute kidney injury (AKI) with a rise in creatinine from baseline. Urine studies indicated a possible post-natal cause for his AKI and a Doppler ultrasound of the kidneys was performed. The left kidney was unable to be visualized and the right renal artery and vein were patent. A MRA/MRA of the abdomen and pelvis was performed on the patient was unable to receive IV contrast. It revealed a chronically thrombosed absent inferior vena cava (blue arrow), a suprarenal segment draining the right kidney and hypoplastic left kidney, along with prominent lumbar and aygous veins. After the evaluation of the cavagram and the MRA, it was concluded by the radiologist that the patient had caval agenesis with a hypoplastic left kidney.

DISCUSSION
Absence of the inferior vena cava is a rare congenital anomaly, but a recognized cause of bilateral deep vein thrombosis. Diagnosis is best made by computed tomography (CT) of the abdomen and pelvis or an MRA of the abdomen. Ultrasound is not sensitive or the diagnosis of IVC anomalies. Although rare, it should be suspected in a DVT diagnosed in a relatively young patient without risk factors.3 Schrdel et al.4 reported a case of subcaval vein thrombosis in the scope of caval absence. They demonstrated external and internal iliac veins joining to form enlarging ascending abdominal subcaval veins allowing blood flow to the heart from the lower extremities by way of the aygous and hemiazygos veins. The same pathway was demonstrated in our patient except that our patient also had a hypoplastic left kidney. The tortuous nature of these collaterals, as well as the number of collaterals, can result in venous stasis and an increased risk for the development of deep vein thrombosis.5 This lead to the recommendation that patients with deep vein thrombosis in the scope of anomalies of the IVC undergo aggressive treatment with subcutaneous anticoagulation and possibly thrombolysis.6

In 2003, Gayer et al.5 described 11 patients with congenital IVC malformations and right renal aplasia. One patient had complete absence of the IVC where four other patients had a partial absence. They hypothesized that right renal hypoplasia occurs with anomalies of the IVC secondary to right renal drainage through a single renal vein, whereas the left kidney is drained by the renal vein and possibly the gonadal vein and lumbar perforators if needed.

We present a patient diagnosed with DVT 20 years prior to presenting to our institution secondary to trauma. He had been on anticoagulation for 20 years with warfarin, but was never diagnosed with an absent inferior vena cava. The diagnosis was made after attempting to place an IVC filter through a right femoral approach. He was also found to have a hypoplastic left kidney and a normal sized right kidney. This contradicts previous literature demonstrating right renal hypoplasia in similar situation based on the embryologic combinations described by Gayer et al. and Campbell and Deuchar. We hypothesize that the left renal vein did not develop and the gonadal vein did not provide sufficient drainage for a normal kidney to develop. Finally, the discussion was had as to anticoagulation and possibly thrombolysis. The patient was eventually diagnosed with caval agenesis with hypoplastic left kidney.

REFERENCES