Current Standards for Treatment of Stroke: Management of Acute Ischemic Stroke

John E. Castaldo MD
Lehigh Valley Health Network, John.Castaldo@lvhn.org

Follow this and additional works at: http://scholarlyworks.lvhn.org/neurology_update_non_neurologist

Part of the Analytical, Diagnostic and Therapeutic Techniques and Equipment Commons, Nervous System Diseases Commons, Neurology Commons, and the Neurosciences Commons

This Presentation is brought to you for free and open access by the Conferences and Symposia Collection at LVHN Scholarly Works. It has been accepted for inclusion in Neurology Update for the Non-Neurologist by an authorized administrator of LVHN Scholarly Works. For more information, please contact LibraryServices@lvhn.org.
Current Standards for Treatment of Stroke

Management of Acute Ischemic Stroke

Dr. John Castaldo, MD
Professor and Chief of Neurology
Acute Ischemic Stroke

- How big and how bad a problem is it?
- How good are the treatment options?
 - Why don’t we use them more often?
- What are the risks of good therapies?
 - Who should receive these therapies?
- How should we move forward to obtain best practice for our communities?
Cerebrovascular Disease: Pathogenesis

Ischemic Stroke (83%)
- Atherothrombotic Cerebrovascular Disease (30%)
- Cardio embolic (30%)
- Lacunar (25%) (small vessel disease)
- Other (vasculitis, dissection, hypercoagulable, Etc. (10%)
- Cryptogenic (5%)

Hemorrhagic Stroke (17%)
- Intracerebral Hemorrhage (70%)
- Subarachnoid Hemorrhage (30%)

Image(s) have been omitted
How Big and How Bad a Problem is Acute Ischemic Stroke?
Stroke is Very Big and Very Bad

- Happens a lot
- Kills many
- Disables most
- Costs a ton
- Happens fast

- Window of RX small
- 800,000/year
- 1 every 3 minutes
- Leading US cause
- $50,000,000,000/year
- 2 million neurons
- 14 billion synapses
- 7.5 miles of axons/min
- Under 4.5 hours/onset
How Good are the Treatment Options?
Preventive and Acute Intervention Therapies Work Well (But)

- Antihypertensive RX
- Blood glucose control
- Afib anticoagulation
- Antiplatelet Rx
- Anti hyperlipidemia Rx
- Life Style Change
- Smoking Cessation
- tPA

- Costs
- Commitment
- Time
- Effort
- Reimbursement
- Compliance
- Culture
- Not fun
Why Don’t More AIS Patients Receive Early Restorative Treatment?
Patients Arrive Late

- Mean 155 minutes
- Mean 380 minutes
- 40%
- 66%
- 5%
- Only 25%

- If using 911
- If first call PCP
- Arrive within 90 min
- Arrive within 4 hrs
- Actually get tPA
- Know stroke signs
Stroke Specialists are Rare

- Neurologists / USA
- Vascular boarded
- Hospitals USA
- Total Beds
- JC Primary Stroke Centers
- BAC Comprehensive
- Telestroke spoke.hub
- tPA administration
- 13,400
- 345
- 5795
- 944,000
- 800
- 200 anticipated
- Vascular neuro only
- Rare by ED physician
Tissue Plasminogen Activator (tPA)

Image(s) have been omitted
How Safe and How Effective is tPA Anyway?
How good is tPA in Stroke?

- Roughly 50% of patients who receive tPA within time window leave hospital with minimal disability (ranking 0-1)
- Roughly 85% of patients who don’t receive tPA are disabled, 15% are dead
Comparison 90 Day Outcomes tPA Treated
LVH to NINDS Study
Modified Rankin Scale @ 90 Days

LVH IV tPA
N=209
(5/00-12/08)

NINDS tPA
N=309

- 0%
- 20%
- 40%
- 60%
- 80%
- 100%

Percentage of Patients

- Minimal/No Disability (0-1)
- Moderate (2-3)
- Severe 4-5
- Death (6)

Comparison 90 Day Outcomes tPA Treated
LVH to NINDS Study
Modified Rankin Scale @ 90 Days

LVH IV tPA
N=209
(5/00-12/08)

NINDS tPA
N=309

- 0%
- 20%
- 40%
- 60%
- 80%
- 100%

Percentage of Patients

- Minimal/No Disability (0-1)
- Moderate (2-3)
- Severe 4-5
- Death (6)
IV tPA - Is Safe and It Works

- If
 - Pt recognizes signs
 - Pt calls 911
 - Arrives at a PCS
 - Stroke team in place
 - Neurologist on scene

- But
 - Few do
 - Many call PCP
 - Ambulance don’t divert
 - 24/7 hard to muster
Using tPA in Routine Clinical Practice

- Overall only about 3%-4% of stroke patients receive tPA—mostly due to time delays
- Efficacy similar to NINDS trial at most centers
- Rate of ICH: 4%-6%
- Risk of ICH increases with protocol violations
 - Time > 4.5 hours
 - Poor blood pressure control
 - INR > 1.7
 - Recent prior stroke
 - Wrong dose
 - 0.9 mg/kg
 - Maximum dose: 90 mg
 - Elevated age and blood sugar also increases risk
Time is Brain: Benefits of IV tPA Diminish Rapidly

3 hr
Influence of Interval Response to tPA: Odds Ratio for Favorable Outcomes

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td><90</td>
<td>2.81</td>
</tr>
<tr>
<td>91–180</td>
<td>1.55</td>
</tr>
<tr>
<td>181–270</td>
<td>1.40</td>
</tr>
<tr>
<td>>270</td>
<td>1.15</td>
</tr>
</tbody>
</table>
Acute Carotid Stroke
Post Stent and tPA ICA Stenosis
Who Should Receive tPA?
Questions to Ask Before Initiating Thrombolytic Therapy

- Did the stroke start within the last 3 hours?
- Any recent illness associated with bleeding risk?
- Is patient taking anticoagulants?
- Are the baseline coagulation tests normal?
- Any medical contraindication for treatment?
- Any neurologic contraindication for treatment?
- What are the findings on CT?
- Are patient and family aware of risks for bleeding?
- What is the blood pressure?
ACCP 2008 Recommendations: Thrombolytic Therapy in AIS

- For eligible patients, we recommend IV tPA 0.9 mg/kg (maximum of 90 mg), provided that treatment is initiated within 3 hours of clearly defined symptom onset (Grade 1A)

- For patients with extensive (greater than 1/3 of the MCA territory) and clearly identifiable hypo density on CT, we recommend against thrombolytic therapy (Grade 1B)
Treatment of Hypertension During and Following Administration of IV tPA

- **SBP 180–230 mm Hg or DBP 105–120 mm Hg**
 - Labetalol—10 mg IV over 1–2 min
 - Repeat every 10–20 min; maximum dose 300 mg; or
 - Labetalol—10 mg IV followed by infusion 2–8 mg/min

- **SBP >230 mm Hg or DBP 121–140 mm Hg**
 - Labetalol as above; or
 - Nicardipine—IV infusion at 5 mg/hr
 - Titrate up to desired effect by 2.5 mg/hr every 5 min; maximum rate 15 mg/hr

- **DBP >140 mm Hg**
 - Nitroprusside infusion 0.5 µg/kg/min; titrate to desired effect
Goals of Antihypertensive Treatment
(in search of the Goldilocks BP)

- Too high is bad and may cause bleeding
- Too low may decompensate collaterals and extend infarct size
- Lowering too fast is worse than not lowering blood pressure at all (unless considering tPA)
- In general target 140-180/90-105
- Start with Nicardipene for best results
What Does Best Practice for AIS Look Like in the Age of tPA?
AIS Treatment: Other Options

- IA administration
- Mechanical thrombolysis
- IA and IV administration
- New thrombolytic agents
- Combination with other antithrombotic agents
- Combination with neuroprotective agents
Thrombolysis: IV or IA Approach?

- An IA approach to recanalization allows for titrated and potentially more effective recanalization vs. IV alone.

- But takes longer and time is brain.

- Requires Neuro Interventionalist with experience.

- Delays or eliminates window for IV tPA which may be fleeting.

- Complications.
90-Day Modified Rankin Score
Revascularized vs. Unrevascularized

<table>
<thead>
<tr>
<th></th>
<th>mRS 0-2</th>
<th>mRS 3-5</th>
<th>Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recan</td>
<td>53%</td>
<td>16%</td>
<td>31%</td>
</tr>
<tr>
<td>Non-Recan</td>
<td>6%</td>
<td>32%</td>
<td>62%</td>
</tr>
</tbody>
</table>
Antiplatelet Therapy

- ACCP 2008 Guidelines for Use of Antiplatelet Therapy in Ischemic Stroke
 - In patients not eligible for thrombolytic therapy, early Aspirin therapy (160–325 mg/day) is recommended (Grade 1A)
 - Delay Aspirin for at least 24 hours after tPA
 - Aspirin can be used safely in combination with low doses of subcutaneous Heparin
Early Anticoagulation

- Urgent anticoagulation is not recommended
 - Does more harm than good in all studies

- Should not be given at all unless imaging has excluded hemorrhage

- Requires slow initial administration and continuous monitoring of anticoagulation and adjustments in dose
Case Presentation (BM)

- 36yo man found down in a pile of mulch
- LVH ED 30 minutes out from discovery
- Stroke Alert: Flaccid quadriplegia, sluggish pupils, absent gag, respiratory arrest
- Toes Up going bilaterally
BM
Found down unresponsive
Distal Basilar Artery Occlusion
Distal Basilar Artery Occlusion
Interventional Catheter Clot Penetration of Basilar Clot
Basilar Clot Extracted with Penumbra Device:

Image(s) have been omitted
Basilar Occlusion After TPA and Reopro
Re-cannalization after tPA Cath in SCA
Basilar Artery: Final Intervventional Results
MRI Day 2 Stroke Alert
Outcome

- NIHSS 0
- Walking the hospital floor unaware of any neurological deficits
- Discharged home
TCD Bubble Study with Valsalva (BM)
On Follow-up

- TEE showed small PFO
- TCD showed aggressive bubble emboli
- Randomized to RESPECT
- Amplatzer device deployed
- Patient has remained free of neurological deficits for 2 years
In a typical acute ischemic stroke, every minute the brain loses

- 1.9 million neurons
- 14 billion synapses
- 7.5 miles myelinated fibers

-- Saver, Stroke 2006
Rapid diagnosis and treatment is crucial to outcome: Time is Brain!

Different strategies are necessary for different time windows for IV and IA tPA

Neuroimaging is opening better understanding of tissue at risk/therapeutic outcome with aggressive therapy

Early Risk Factor Modification and Stroke Unit improves outcomes substantially