Post Gastric Bypass Hypoglycemia: Four Cases Treated Successfully with Alphaglucosidase Inhibitor Therapy

Shavon S. Frankhouser DO
Lehigh Valley Health Network, Shavon_S.Frankhouser@lvhn.org

Aakif N. Ahmad DO
Lehigh Valley Health Network, Aakif.Ahmad@lvhn.org

Gretchen A. Perilli MD
Lehigh Valley Health Network, gretchen_a.perilli@lvhn.org

Benjamin J. Quintana MD
Lehigh Valley Health Network

Marc A. Vengrove DO, FACP
Lehigh Valley Health Network, Marc.Vengrove@lvhn.org

Follow this and additional works at: https://scholarlyworks.lvhn.org/medicine
Part of the Chemicals and Drugs Commons, Endocrine System Commons, Endocrine System Diseases Commons, Endocrinology, Diabetes, and Metabolism Commons, Medical Sciences Commons, Nutritional and Metabolic Diseases Commons, and the Therapeutics Commons

Published In/Presented At

This Poster is brought to you for free and open access by LVHN Scholarly Works. It has been accepted for inclusion in LVHN Scholarly Works by an authorized administrator. For more information, please contact LibraryServices@lvhn.org.
Introduction

- Roux-en-y gastric bypass (GB) surgery has been increasingly employed to treat the morbidities of obesity.
- In 2005, Service et al (1) reported hyperinsulinemic hypoglycemia in 6 GB patients who were found to have anatomic changes in islet cells.
- Since that time, postprandial hypoglycemia has become increasingly recognized as a late complication of GB.
- Carbohydrate (CHO) restriction is recommended as initial therapy but is not always effective in reducing hypoglycemia.
- Alphaglucosidase inhibitor (AGI) therapy has been suggested as a second line therapy.
- We report the first collection of GB hypoglycemic patients who were successfully treated with long-term AGI therapy.

Case 1

- 42 F who underwent GB 3 years prior presented for evaluation of hypoglycemia.
- Patient met criteria for Whipple’s Triad:
 - Experiencing sweating, palpitations, tremor and neuroglycopenic symptoms 2-4 hours postprandial.
 - Documented capillary glucose (BG) of 35-50 mg/dl.
- Symptoms resolved with sodium HCO3.
- Baseline testing ruled out adrenal, thyroid, renal and hepatic dysfunction.
- Mixed 75g meal endocrine testing revealed:
 - Fasting BG 83 mg/dL.
 - 115 minute symptomatic BG of 42 mg/dl with simultaneous serum insulin 14 u/mL (<29.2 u/mL).
 - C-peptide 4.2 ng/ml (0.8-9.6 ng/mL).
 - Beta hydroxybutyric acid of 0.08 mM/L (0.0-0.42 mM/L).
 - Salbutamol screen negative.
 - GT negative for pancreatic mass.
- Because her hypoglycemia was exclusively postprandial, empiric therapy was instituted rather than pursuing invasive testing to rule out insulinoma.
- She started a 30g per meal CHO restricted diet and initially responded.
- However increasing CHO intake resulted in symptomatic hypoglycemia.
- Pre-meal AGI therapy of 50mg TID was initiated with meals.
- At 3-year follow up patient denies symptomatic postprandial hypoglycemia except when she omits AGI therapy.

Discussion

- Most recent review of symptomatic hypoglycemia in GB patients has described an incidence between 0.2-6% (2).
- To date 89 cases have been reported (Table 2).

Case 2

- 49 M with a history of diabetes with poor control on insulin.
- One year post-GB surgery he was switched to a low carbohydrate diet with a goal of 20% protein, 35% fat, and 45% CHO.
- He was asymptomatic but his BG was less than 50 mg/dL 1 hour after breakfast.
- Patient was started on 25 mg of ORam 3 times per day.
- Improvement was noted.
- Taper to 15 mg and then 5 mg.
- Treatment was discontinued.
- Hypoglycemia occurred 2-3 hours after each meal.
- At 3 months follow up patient had resumed his previous diet.

Table 1

<table>
<thead>
<tr>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPG</td>
<td>29-39 mg/dl</td>
<td>24-34 mg/dl</td>
<td>29-39 mg/dl</td>
</tr>
<tr>
<td>Insulin</td>
<td>10.4, 12.4</td>
<td>12.4, 12.4</td>
<td>12.4, 12.4</td>
</tr>
<tr>
<td>C-peptide</td>
<td>6.2, 8.2</td>
<td>6.2, 8.2</td>
<td>6.2, 8.2</td>
</tr>
<tr>
<td>CT Adipose</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Treatment</td>
<td>Carbohydrate intake & Ag 4t & Ag 5t</td>
<td>Carbohydrate intake & Ag 4t & Ag 5t</td>
<td>Carbohydrate intake & Ag 4t & Ag 5t</td>
</tr>
<tr>
<td>Time of follow-up</td>
<td>4 years</td>
<td>3 years</td>
<td>2 years</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bills</td>
<td>83, 84</td>
<td>75, 76</td>
<td>75, 76</td>
</tr>
<tr>
<td>Mean age (years)</td>
<td>66, 67</td>
<td>66, 67</td>
<td>66, 67</td>
</tr>
<tr>
<td>Mean Time of follow-up (months)</td>
<td>7, 8</td>
<td>7, 8</td>
<td>7, 8</td>
</tr>
<tr>
<td>Lowest Glucose Value (mg/dl)</td>
<td>35, 36</td>
<td>35, 36</td>
<td>35, 36</td>
</tr>
</tbody>
</table>

Discussion (cont.)

- Glucagon like peptide 1 levels were found to be significantly increased in GB patients with symptomatic hypoglycemia compared to asymptomatic GB patients (4).
- CHO restriction is the first step instituted to treat symptomatic GB hypoglycemia.
- Kellogg et al (5) described 10 out of 12 GB patients who had complete or partial improvement of symptomatic hypoglycemia with low CHO diet.
- Acarbose has been shown to decrease postprandial hyperglycemia after mixed meal testing as well as attenuate the rise in insulin and GLP-1 levels (6).
- Kellogg et al (5) placed 2 patients on AGI therapy after failing low CHO diet therapy with 1 experiencing improvement.
- Moreira et al (7) added AGI to verapamil therapy to a single patient with resolution of hypoglycemia.
- Hanrahi et al (8) reported the use of AGI therapy in a single patient decreased hypoglycemia after an 8 month follow-up.

Conclusions

- We are the first to demonstrate the long-term effectiveness of AGI therapy in GB patients with postprandial hypoglycemia who fail dietary carbohydrate restriction.

References: