Prevalence of Ticks Infected with Human Pathogens in the Lehigh Valley: Molecular Surveillance

Emily Davidson

Muhlenberg College

Follow this and additional works at: http://scholarlyworks.lvhn.org/research-scholars-posters

Published In/Presented At

This Poster is brought to you for free and open access by LVHN Scholarly Works. It has been accepted for inclusion in LVHN Scholarly Works by an authorized administrator. For more information, please contact LibraryServices@lvhn.org.
Prevalence of Ticks Infected with Human Pathogens in the Lehigh Valley: Molecular Surveillance

Emily Davidson, Muhlenberg College
Lehigh Valley Health Network, Allentown, Pennsylvania

Background

Black-legged ticks (Ixodes scapularis) transmit Borrelia burgdorferi, the spirochete that causes Lyme disease. The incidence of Lyme disease cases reported in the Lehigh Valley has increased over the past three decades (PA Health Dept.). A. phagocytophilum (causing human granulocytic anaplasmosis), and Borrelia miyamotoi (causing tick-borne relapsing fever).

Other infectious diseases transmitted by Ixodes scapularis are of concern. These pathogens include Babesia microti (causing human babesiosis), Anaplasma phagocytophilum (causing human granulocytic anaplasmosis), and Borrelia miyamotoi (causing tick-borne relapsing fever).

Reporting the prevalence of infection in an area can inform health care providers in making time-sensitive decisions involving prophylaxis and treatment in regards to tick-borne infectious disease.

Methods

Collect Nymphs ➔ Extract DNA ➔ Real-Time PCR

Over the summers of 2015 and 2016, at least 50 black-legged tick nymphs were tested from each of 11 sites within the Lehigh Valley. More than 1,150 ticks were tested for the presence/absence of human pathogens. The infection rate multiplied by tick abundance can be used to calculate the risk for acquiring a tick-borne pathogen, known as the Entomological Risk Index (ERI).

After DNA extraction, samples were tested for the successful extraction of DNA using qPCR. All credible intervals were calculated using the statistical package R. *Samples have been confirmed by Real-Time PCR and DNA sequencing.

Results

Table 1: Results from the 600 ticks that were collected within the Lehigh Valley and tested for presence/absence of human pathogens. The infection rate performed in 2014 at different sites in the Lehigh Valley which were 18.3% (20/109 nymphs, 95% CI: 11.6-26.9%) positive for this pathogen (Edwards et al. 2015). In summer 2015, B. microti, A. phagocytophilum were detected at low levels and B. miyamotoi was not detected. Ticks collected in Summer 2016 are currently being tested for infection with these pathogens.

The incidence of B. burgdorferi infected ticks in the Lehigh Valley may impact clinical decisions. Evidence-based guidelines used by health care providers describe how antimicrobial prophylaxis is recommended for adult patients with a recognized tick bite in areas with local infection rates of B. burgdorferi reported to be equal or over 20% (Wormser et al. 2006). In 2015 and 2016, the majority of our study sites within the Lehigh Valley exceeded this level of infection.

Bayesian approach: Likelihood that the actual value is in an interval that surrounds sample value

Discussion

B. burgdorferi infected black-legged ticks were abundant at all 11 study sites. This confirms previous research showing a widespread distribution of B. burgdorferi infected ticks in the Lehigh Valley region (Edwards et al. 2015).

No significant difference was observed between the overall infection rate of B. burgdorferi in blacklegged tick nymphs collected in 2015 and 2016 (P=0.8, Two-tailed T Test).

The Entomological Risk Index for B. burgdorferi are not statistically significant between 2015 and 2016 (P=0.3, Two-tailed T Test). Entomological risk incorporates both infection rate and tick abundance data.

Overall B. burgdorferi infection rates for summer 2015 and 2016 are not significantly different from a similar study performed in 2014 at different sites in the Lehigh Valley which were 18.3% (20/109 nymphs, 95% CI: 11.6-26.9%) positive for this pathogen (Edwards et al. 2015).

In summer 2015, B. microti, A. phagocytophilum were detected at low levels and B. miyamotoi was not detected. Ticks collected in Summer 2016 are currently being tested for infection with these pathogens.

Future Work

- Our immediate goal is to complete testing of tick samples that were collected in 2016 and to complete the statistical analysis of our full 2015 and 2016 data set.
- Continue vector surveillance of black-legged ticks to track rate of infection, ERI, and tick abundance to compare with cases of reported tick-borne illness.
- Analyze whether year to year variations in clinically reported cases of Lyme disease correlate with our ERI estimates.

Acknowledgements