Rethinking Open Repairs of Abdominal Aortic Aneurysms: New Stent Can Improve Patient Care and Cost Efficiency

Steven J. Imburgio
Lehigh University

James L. Guzzo MD
Lehigh Valley Health Network, James_L.Guzzo@lvhn.org

Follow this and additional works at: http://scholarlyworks.lvhn.org/research-scholars-posters

Published In/Presented At

This Poster is brought to you for free and open access by LVHN Scholarly Works. It has been accepted for inclusion in LVHN Scholarly Works by an authorized administrator. For more information, please contact LibraryServices@lvhn.org.
Rethinking Open Repairs of Abdominal Aortic Aneurysms: New Stent Can Improve Patient Care and Cost Efficiency

Steven J. Imburgio and James L. Guzzo MD, FACS
Lehigh Valley Health Network, Allentown, Pennsylvania

CONCLUSIONS

Annually, 200,000 people are diagnosed with an abdominal aortic aneurysm (AAA) in the United States. The abdominal aorta is the largest artery in the abdominal cavity and can be prone to dilating into a balloon-shaped aneurysm as the wall of the blood vessel weakens from aging. Typically, individuals with AAA's present no symptoms, and severe abdominal pain is only reported if the aneurysm has ruptured. AAs are often discovered when CT scans are taken of a patient’s abdomen when seeking medical attention for another condition. Once diagnosed, patients are offered repair by vascular surgeons when the AAA is >5 cm in size to prevent possible rupture that could rapidly result in death.

First line treatment involves a minimally invasive procedure called endovascular aneurysm repair (EVAR), in which a catheter is inserted through the patient’s femoral artery and is guided to the aneurysm site via X-ray imaging. A stent graft is expanded from the catheter to seal the artery walls, allowing blood flow to be restored through the stent graft and away from the aneurysm. Adequate infrarenal neck landing zone of 15-20 mm, is mandatory for proper deployment of the endograft. Alternatively, in patients with inadequate infrarenal neck, a much more invasive operation via an open abdominal approach must be performed with a complex surgical repair of the AAA with a graft, directly.

Ideally, all AAAs should be treated in a minimally invasive manner like that of the EVAR; however, the location of the aneurysm, paired with the patient’s anatomy may not warrant an EVAR, leaving the open repair as the only surgical option. With an overwhelming population of AAA patients being elderly, this harsh open operation leads to high post-operative morbidity and mortality and a long hospital length of stay (LOS) of which yields high hospital costs. A new device called the Zenith® Fenestrated AAA Endovascular Graft aims to treat AAA patients with inadequate infrarenal landing zone in a minimally invasive manner, similar to that of the EVAR. Unfortunately, its use is currently limited to university centers and so the research question we sought to answer was: How many patients can be spared the complex open repair procedure with this technology if its use was widely accessible?

METHODS

General Overview:

This was a retrospective review of a prospectively maintained database of a single vascular surgeon’s abdominal aortic aneurysm cases over a 4 year period from 2012 to 2015.

Medical records for all AAA patients during this time frame were analyzed and the following information recorded for each:

- Date of operation
- Type of procedural (EVAR vs open repair)
- Specific indication for all open repairs over EVAR
- Hospital length of stay (LOS)

AAA patients were then separated based on their treatment operation into an EVAR control group or the open repair experimental group of interest. Abdominal CT scans of all the open repair patients were analyzed and these individuals had their vascular anatomy measured directly on their CT scan. These measurements were compared to that of Figure 3 and those individuals who fit all the instructions for use (IFU) were deemed to be fenestrated EVAR (FEVAR) candidates. Lastly, the average LOS was calculated for the two groups to quantitatively indicate how the potential FEVAR candidates could have received a much shorter hospital visit due to the minimally invasive EVAR nature of this procedure.

RESULTS

From 2012-2015, 114 aortic cases were performed by one vascular surgeon. In total there were 88 endovascular repairs, 18 open repairs, 8 ruptures of which were excluded from analysis, and 1 post-operative death that was not AAA related.

<table>
<thead>
<tr>
<th>Year</th>
<th>2015</th>
<th>2014</th>
<th>2013</th>
<th>2012</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVAR</td>
<td>30</td>
<td>28</td>
<td>21</td>
<td>9</td>
<td>88</td>
</tr>
<tr>
<td>Open</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>Zenith® Fenestrated Graft Repair Candidates</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Rejected Abdominal Aortic Aneurysm Patients</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

- Mean hospital LOS for EVAR was: 4.26 days; Range: 2 - 33 days
- Mean hospital LOS for Open repair was: 14.92 days; Range: 5 - 44 days
- # of open repair patients that were FEVAR candidates: 9 / 18 (50%)