A Pilot Study Investigating the Utilization of Crest Pads for Treatment of Toe Callus and Ulceration (Presentation)

Monica L. Melo DNP, RN, ACNS-BC, CWOCN, CFCN
Monica_L.Melo@lvhn.org

James McCullough MD
Lehigh Valley Health Network, James.McCullough@lvhn.org

Tricia S. Bernecker PhD, MSN, RN, ACNS-BC
DeSales University, tricia_s.bernecker@lvhn.org

John J. Hong MD
Lehigh Valley Health Network, John_J.Hong@lvhn.org

Jane Scott Trumbauer
Lehigh Valley Health Network, Jane_S.Trumbauer@lvhn.org

Follow this and additional works at: http://scholarlyworks.lvhn.org/patient-care-services-nursing

Published In/Presented At

This Presentation is brought to you for free and open access by LVHN Scholarly Works. It has been accepted for inclusion in LVHN Scholarly Works by an authorized administrator. For more information, please contact LibraryServices@lvhn.org.
A Pilot Study Investigating the Utilization of Crest Pads for Treatment of Toe Callus and Ulceration

Doctor of Nursing Practice Scholarly Project

Monica Melo, DNP, RN, ACNS-BC, CWOCN, CFCN
Objectives

- Discuss impact of developing a research question that has potential to improve patient care through innovation and promotion of change
- Discuss barriers to implementation of practice change and strategies to overcome these barriers
- Describe results of project and implications for the future
BACKGROUND & SIGNIFICANCE

Scholarly Project
INTRODUCTION

- Foot care is often neglected
- Lesser toe deformities can result in callus or ulcers on distal digits
- Diabetics and patients with peripheral neuropathy are at elevated risk, and the incidence of diabetes continues to increase
- Most common cause of preventable amputations in the diabetic, neuropathic patient population is painless repetitive trauma, which leads to callus and ulceration (King, 2008)
INTRODUCTION

- Crest pads made of gauze and moleskin can reduce pressure on distal digits
- Anecdotally, use of Crest pads appears to reduce callus and ulceration - no prior research studies have been done to evaluate effectiveness
- A descriptive retrospective review of data using a pre-post intervention study design to evaluate Crest pad effectiveness is this doctoral student’s Scholarly Project
KEY TERMS

- **Offloading**
 - Redistribution of pressure

- **Callus**
 - Hyperkeratotic lesion composed of dead skin cells, develops in areas of high pressure or friction

- **Hemorrhagic callus**
 - Hyperkeratotic lesion with evidence of bleeding within or under callus layers

- **Ulcer**
 - Partial or full-thickness breakdown in skin integrity
LESSTER-TOE DEFORMITIES

- Include hammertoes, mallet-toes, and claw-toes affecting the 2nd - 5th toes

- Caused by:
 - peripheral neuropathy such as with diabetes mellitus;
 - any inflammatory arthropathies such as gout or arthritis;
 - repetitive trauma such as ill-fitting shoes;
 - neuromuscular diseases including lumbar disc disease or polio

- Cause areas of high pressure on bony prominences during ambulation or while wearing shoes

- Can lead to callus and ulceration
CREST PADS

- Consist of a piece of rolled gauze covered by adhesive moleskin, with an area cut out for the toes – this will mold to the shape of the patient’s toes over several days, providing customized offloading of the distal ends of the digits
ROTHMAN’S MODEL OF CAUSATION

- *Causes* published in 1976
- Model of disease causation
- Sufficient causes
 - Invariably produce a given effect
- Component causes
 - Multiple components combine to form a sufficient cause
 - Blocking one component cause reduces or prevents the effect
APPLICATION OF ROTHMAN’S MODEL

Ulcer Development

- Pressure
- Deformity
- Neuropathy

Ulcer Prevention

- Pressure
- Deformity
- Neuropathy
LITERATURE REVIEW

Scholarly Project
NURSE-LED FOOT CARE

- Etnyre, Zarate-Abbott, Roehrick, & Farmer, 2011
- Discussed role of foot care nursing in reducing amputation rates
- Noted an aging population with multiple co-morbidities and physical limitations
 - 2009 – 39.6 million persons over age 65
 - By 2030 – 72.1 million persons over age 65
- Described risk categorization, bony deformities, management guidelines, and patient education
NURSE-LED FOOT CARE

- Fujiwara et al., 2011
- Uncontrolled before & after intervention study on effects of foot care nursing
- Single nonrandomized trial
- Sample of 88 subjects over two years
- Subjects received follow-up and treatment based on risk categorization
- Showed improvement in tinea pedis ($p = 0.017$), callus grade ($p = 0.001$), and no recurrent chronic ulcerations developed
LESSETER-TOE DEFORMITIES

- Shirzad, Kiesau, DeOrio, & Parekh, 2011
- DiPreta, 2014
- Coughlin, 2002; Coughlin & Smith, 2009
- McCartan & Rosenblum, 2014

http://www.hendersonpodiatry.com/podiatrist-shop.html
FOOT CARE

Yumang, Hammond, Filteau, & Purden, 2009

- Qualitative study, 9 subjects
- Hemodialysis patient perceptions of foot problems
- Structured interview technique
- Major themes:
 - Foot problems are not serious
 - Sense of personal protection from foot problems
 - Self-care of feet
FOOT CARE

- Lavery et al., 2010
- Retrospective chart review 300 subjects (150 on hemodialysis, 150 history foot ulcer or amputation)
- Subjects selected from multispecialty physician group 550+ physicians, 14 clinics, 3 dialysis centers, and a 535 bed hospital
- Findings:
 - 30% received professional foot care
 - 7% had therapeutic footwear
 - 1.3% had formal diabetic education
 - Ulcer incidence similar in each group, but amputation rate higher for dialysis subjects
FOOT CARE

- Peterson & Virden, 2012 – Quality improvement review
- Initial review 2006 – Silver City Health Center
 - 18% of 64 diabetics had foot screening
 - None had a comprehensive foot evaluation
 - No follow-up or referrals provided
- Three step improvement process implemented
 - Documentation tool
 - Provider training in foot & nail care problems
 - Referral sources identified
- Follow-up review 2010
 - 30% of 184 diabetics had a comprehensive foot exam
 - From 2006-2010, 188% increase in diabetic subjects, but 400% reduction in foot-related hospital admissions
OFFLOADING

- Waaijman et al., 2014
- Sample – 171 diabetic, neuropathic subjects with history of prior ulcer within past 18 months and new prescription custom footwear
- Compliance with shoe wear assessed with a monitor
- 71 subjects developed recurrent ulcers, 41 were result of unrecognized repetitive trauma
- “Minor lesions” were strongest determinant of ulcer recurrence – these included callus, hemorrhagic calluses, or blisters ($r = -0.23$, $p < 0.01$)
OFFLOADING

- Owings et al., 2008
- Compared custom insoles tailored to barefoot pressure distribution patterns with traditional custom insoles
- Insoles based on pressure readings reduced peak plantar pressures by 32% ($p < 0.0001$) while not increasing peak pressures in non-regions of interest
- Increasing customization improves results
CLINICAL PRACTICE GUIDELINES

American Diabetes Organization, 2013

- Relevant for diabetes complications including:
 - Neuropathy
 - Nephropathy
 - Retinopathy
 - Cardiovascular disease, and
 - Foot ulcerations
- Heavy focus on medication management

Wound, Ostomy, Continence Nurses Society, 2012

- Focused entirely on neuropathy and ulceration
- Described comprehensive foot examination in detail
- Incorporated more nursing interventions
- Recommended callus debridement and offloading pressure
OBJECTIVE

Scholarly Project
OVERALL OBJECTIVE

- To evaluate the efficacy of Crest pads in the treatment of toe callus and ulceration on the distal ends of digits affected by lesser-toe deformities, using a pre-post intervention design with subjects acting as their own controls.
EXAMPLE

- Initial presentation callus & hemorrhagic callus ...
... but with severe ulcer identified post-debridement
TREATMENT

- Crest pad
EXAMPLE

- 1st Followup ...
After debridement – only tiny ulcer remains.

12 days
PROJECT DESIGN & METHODS

Scholarly Project
METHODOLOGY

- Retrospective chart review to gather data
- Subjects seen by doctoral student at vascular surgery practice
- Pre-post intervention design
- Subjects acted as their own controls
- McNemar’s test was used for statistical analysis
POPULATION & STUDY SAMPLE

Setting
- Six-surgeon vascular surgery practice

Population & Sample
- Institutional Review Board approval obtained 10/2014, data collection started 1/2015
- Subjects who were seen by the doctoral student between 8/1/11 and 12/31/14
- Subjects with a callus, hemorrhagic callus or ulcer on the distal end of a digit
- Were treated with a Crest pad during the above time frame
- Had to have a follow-up visit after initiation of Crest pad
- All over 18 years of age
- Subjects with known osteomyelitis were excluded
DATA SOURCES

- **Medent** - vascular practice’s electronic medical record 8/2011 to 2/2015
 - Visit type
 - Appointment listings by date
 - Keyword search “Crest Pad”

- **Centricity** - electronic medical record for affiliated health network during data collection
 - Hemoglobin A1c levels
 - Ankle-brachial index
DATA COLLECTION & MANAGEMENT

- **Initial visit variables**
 - **Demographics**
 - **Clinical information**
 - Smoking status, body-mass index, hemoglobin A1c, ankle-brachial index
 - Presence of diabetes, neuropathy, arterial disease, end-stage renal disease
 - History of prior amputation
 - Presence of callus, hemorrhagic callus, and ulceration
 - Footwear
DATA COLLECTION & MANAGEMENT

- **Follow-up visit data**
 - Number of days from treatment initiation
 - Callus, hemorrhagic callus & ulcer characteristics

- Data were assigned values according to a coding plan

- Data were placed onto an Excel Spreadsheet to facilitate statistical analysis

- In order to use McNemar’s test, data were assigned to two groups upon completion of data collection
 - Resolved/Improved
 - Unchanged/Worsenened
DATA ANALYSIS

- Independent variable – the use of Crest pads over time
- Dependent variables – callus, hemorrhagic callus, and ulceration
- Nominal level data
- Pre-post intervention design, subjects act as their own controls
- McNemar’s test is recommended for paired samples and nominal level data (Polit & Beck, 2012; Sylvia, 2014)
DEMOGRAPHICS & INITIAL CLINICAL FINDINGS

Scholarly Project
RESULTS - DEMOGRAPHICS

Sample

- Males
- Females

N = 22

Sample age ranges

50-59 60-69 70-79 80+
RESULTS - INSURANCE

Insurance - Primary

- Medicare
- Medicare Replacement

Insurance - Secondary

- Commercial
- None
DIABETES

Diabetes in Study Participants

- Not diabetic
- NIDDM
- IDDM

HgbA1c Ranges for Study Diabetics

- < 5.7
- 5.8 - 6.4
- 6.5 - 9.0
- > 9.0
- Unknown
SMOKING STATUS & BMI

Smoking Status
- Never
- Former
- Current

BMI Ranges
- < 18.5
- 18.5 - 24.9
- 25.0 - 29.9
- > 30.0
PERIPHERAL ARTERIAL DISEASE

Ankle-Brachial Index

- > 1.3
- 0.91 - 1.3
- 0.71 - 0.90
- 0.41 - 0.7
- < 0.4
- Unknown

Pedal Pulses

- Normal
- Abnormal
NEUROPATHY & DEFORMITIES

Neuropathy

- Present
- Absent

Deformity

- Lesser-toe
- Hallux valgus
- Other
- Charcot foot
AMPUTATION STATUS & FOOTWEAR

Prior Amputation

- Toe
- Below-knee
- N/A

Footwear

- Inappropriate
- Appropriate non prescription
- Prescription
- Custom molded
INITIAL CLINICAL FINDINGS

Callus
- Distal digit - 21

Hemorrhagic callus
- Distal digit - 8

Ulcer
- Distal digit - 9
POST-INTERVENTION FINDINGS

Scholarly Project
POST-INTERVENTION FINDINGS

<table>
<thead>
<tr>
<th>Initial Findings</th>
<th>1<sup>st</sup> Follow-up</th>
<th>2<sup>nd</sup> Follow-up</th>
<th>3<sup>rd</sup> Follow-up</th>
<th>4<sup>th</sup> Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Callus n = 21</td>
<td>R / I = 20</td>
<td>R / I = 13</td>
<td>R / I = 10</td>
<td>R / I = 5</td>
</tr>
<tr>
<td></td>
<td>U / W = 1</td>
<td>U / W = 1</td>
<td>U / W = 0</td>
<td>U / W = 0</td>
</tr>
<tr>
<td></td>
<td>P < 0.0001</td>
<td>P = 0.0002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemorrhagic Callus n = 8</td>
<td>R / I = 8</td>
<td>R / I = 5</td>
<td>R / I = 4</td>
<td>R / I = 2</td>
</tr>
<tr>
<td></td>
<td>U / W = 0</td>
</tr>
<tr>
<td>Ulcer n = 9</td>
<td>R / I = 9</td>
<td>R / I = 7</td>
<td>R / I = 7</td>
<td>R / I = 4</td>
</tr>
<tr>
<td></td>
<td>U / W = 0</td>
<td>U / W = 0</td>
<td>U / W = 7</td>
<td>U / W = 0</td>
</tr>
<tr>
<td>Mean follow-up days: 45</td>
<td>Mean follow-up days: 97.4</td>
<td>Mean follow-up days: 111.9</td>
<td>Mean follow-up days: 236.1</td>
<td></td>
</tr>
</tbody>
</table>

Note: R / I = Resolved / Improved, U / W = Unchanged / Worsened
MCNEMAR’S TEST

Callus Initial & 1st Follow-up

<table>
<thead>
<tr>
<th>Classification B</th>
<th>Classification A</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>20</td>
<td>20 (95.2%)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1 (4.8%)</td>
</tr>
<tr>
<td></td>
<td>0 (0.0%)</td>
<td>21 (100.0%)</td>
<td>21</td>
</tr>
</tbody>
</table>

McNemar test

- Difference: 95.24%
- 95% CI: 63.16 to 95.24

Exact probability (binomial distribution)

- Significance: $P < 0.0001$
McNemar’s Test

Callus Initial & 2nd Follow-up

<table>
<thead>
<tr>
<th>Classification B</th>
<th>Classification A</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>13 (92.9%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0%)</td>
<td>(100.0%)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>1 (7.1%)</td>
<td></td>
</tr>
</tbody>
</table>

McNemar test

<table>
<thead>
<tr>
<th>Difference</th>
<th>92.86%</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% CI</td>
<td>46.98 to 92.86</td>
</tr>
</tbody>
</table>

Exact probability (binomial distribution)

| Significance | P = 0.0002 |
RESULTS

- Only two comparisons could be calculated with McNemar’s test
- Both demonstrated statistical significance
- All other comparisons demonstrated 100% improved/resolved findings
SIGNIFICANCE & FUTURE RECOMMENDATIONS

Scholarly Project
CLINICAL SIGNIFICANCE

- Clinical Nurse Specialist domains include:
 - Nurses
 - Patients & families
 - System/organization

- The outcomes of this study affect:
 - Nurses – can be instructed in a simple-to-make, evidence-based intervention
 - Patients – improved quality of life, reduced disease burden
 - Organization – decreased number of foot ulcers and hospital admissions
These outcomes are compatible with the Triple Aim of Healthcare:

- **Safe and effective care with quality outcomes**
- **Cost containment**
 - A typical hospital admission for a non-healing diabetic foot ulcer in 2010 cost $13,258
- **The care experience**
REFERENCES

REFERENCES

REFERENCES

Questions?

Thank you!