An Unlikely Cause of Possible Hormone-Dependent Abdominal Pain in Young Fertile Females: A Case Series

Bonnie Patek DO
Lehigh Valley Health Network, bonnie.patek@lvhn.org

Hiral Shah MD
Lehigh Valley Health Network, hiral_n.shah@lvhn.org

Shashin Shah MD
Lehigh Valley Health Network, Shashin.Shah@lvhn.org

Follow this and additional works at: http://scholarlyworks.lvhn.org/medicine
Part of the Gastroenterology Commons, and the Medical Sciences Commons

Published In/Presented At

This Poster is brought to you for free and open access by LVHN Scholarly Works. It has been accepted for inclusion in LVHN Scholarly Works by an authorized administrator. For more information, please contact LibraryServices@lvhn.org.
Background

- Solid pseudopapillary neoplasm (SPN) is a rare pancreatic exocrine tumor (Table 1) with unknown etiology, first described by Dr. Frantz in 1959.
- SPN is a benign lesion with low grade malignant potential, often curative with surgery.
- Hormones may play into the origin/development, with a strong correlation with females and progesterone receptor (PR).
- SPN mimics pancreatic neoplasms, pseuodoblasts and pancreatic endocrine neoplasms on imaging and cytological features (Table 2, Image 1).

Case Presentation

We present two cases of young females with epigastric pain, nausea/vomiting, without pruritus, jaundice or steatorrhea.

CASE 1:

- A 29-week pregnant female with a solid pancreatic lesion in theuncinate process (Image 2) as incidental finding on imaging. Mirena was inserted post-partum and repeat imaging showed an increase in tumor size after 1 year.
- Endoscopic ultrasound-fine needle aspiration (EUS-FNA) was performed (Table 3), followed by a Whipple procedure.
- Post-op complications included intra-abdominal abscess.

CASE 2:

- A solid mass in the pancreatic tail was found on CT imaging (Image 3) with follow-up MRI indicating spontaneous lesion regression. Two years later and starting oral contraceptive pills, repeat imaging showed increase tumor size and enhancing liver lesions.
- EUS-FNA was performed (Table 3) and CT guided liver biopsy consistent with focal nodular hyperplasia. Distal pancreatectomy and splenectomy were performed.
- Repeat imaging showed increased size in liver lesions, but PET scan was negative.

Discussion:

- Both cases demonstrate a classic presentation of SPN: a young, fertile female with abdominal pain and pancreatic lesion on imaging.
- Lack of known etiology/pathophysiology, specific IHC markers/patterns to distinguish SPN from other pancreatic masses is a challenge.
 - Etiology: ectopic ovarian stroma from female genital bud or primitive centrocarcinoma cells that are hypersensitive to female sex hormone stimulation leading to proliferation.
 - PR are located on 75% α-cells and 5-20% β-cells. Progesterone increases proliferation of acinar cells most in vivo and promotes proliferation of differentiated cells, not neogenesis.
- SPN requires complete surgical resection despite low malignancy risk with 5yr survival ~97%.
 - Metastatic disease include liver, regional lymph nodes, mesentery, omentum, peritoneum with local invasion to duodenum, stomach, spleen and major vessels.
 - Post-op complications: pancreatic fistula, pancreatitis, prolonged gastric emptying, bleeding, infection, diabetes.
- Possible IHC pattern for accurate SPN diagnosis is: CD10, β-catenin with negative membranous E-cadherin.
 - Not utilized universally leading to misdiagnoses or inappropriate therapy.

References:

Table 1: Common Features of SPN

<table>
<thead>
<tr>
<th>Epidemiology</th>
<th>Clinical Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd-3rd decade of life</td>
<td>Hypertrophic</td>
</tr>
<tr>
<td>Female gender (10:1)</td>
<td>Abdominal Pain/Mass</td>
</tr>
<tr>
<td>Rare pancreatic exocrine tumor</td>
<td>Asymptomatic</td>
</tr>
<tr>
<td>15% malignant</td>
<td>Nausea/Vomiting</td>
</tr>
</tbody>
</table>

Table 2: Microscopic Features of SPN

<table>
<thead>
<tr>
<th>Cytology</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round/oval eccentric nuclei</td>
<td>Membranous E-cadherin</td>
</tr>
<tr>
<td>Sheets of uniform cells with papillary formation</td>
<td>E-cadherin membranous</td>
</tr>
</tbody>
</table>

Table 3: Pathology and IHC Case Series Comparison

<table>
<thead>
<tr>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNA</td>
<td></td>
</tr>
<tr>
<td>EUS-FNA</td>
<td></td>
</tr>
<tr>
<td>Membranous E-cadherin</td>
<td>Membranous E-cadherin</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>E-cadherin, PR, AE1/AE3, CD10, S100, Vimentin, PR</td>
<td></td>
</tr>
<tr>
<td>Membranous E-cadherin, PR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Membranous E-cadherin, PR, S100, Vimentin, PR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Membranous E-cadherin, PR, S100, Vimentin, PR</td>
<td></td>
</tr>
</tbody>
</table>

Image 1: Characteristic hyaline globules in clusters (arrow). Solid sheets of uniform cells with papillary formation from lack of adhesion (B).

Image 2: Case 1: CT of abdomen/pelvis that showed a solid pancreatic mass (arrow) located in the tail of the pancreas.

Image 3: Case 2: CT of abdomen/pelvis that showed a solid pancreatic mass (arrow) located in the body of the pancreas.