Deep Learning-Assisted Identification of Femoroacetabular Impingement (FAI) on Routine Pelvic Radiographs.

Publication/Presentation Date

2-1-2024

Abstract

To use a novel deep learning system to localize the hip joints and detect findings of cam-type femoroacetabular impingement (FAI). A retrospective search of hip/pelvis radiographs obtained in patients to evaluate for FAI yielded 3050 total studies. Each hip was classified separately by the original interpreting radiologist in the following manner: 724 hips had severe cam-type FAI morphology, 962 moderate cam-type FAI morphology, 846 mild cam-type FAI morphology, and 518 hips were normal. The anteroposterior (AP) view from each study was anonymized and extracted. After localization of the hip joints by a novel convolutional neural network (CNN) based on the focal loss principle, a second CNN classified the images of the hip as cam positive, or no FAI. Accuracy was 74% for diagnosing normal vs. abnormal cam-type FAI morphology, with aggregate sensitivity and specificity of 0.821 and 0.669, respectively, at the chosen operating point. The aggregate AUC was 0.736. A deep learning system can be applied to detect FAI-related changes on single view pelvic radiographs. Deep learning is useful for quickly identifying and categorizing pathology on imaging, which may aid the interpreting radiologist.

Volume

37

Issue

1

First Page

339

Last Page

346

ISSN

2948-2933

Disciplines

Diagnosis | Medicine and Health Sciences | Other Analytical, Diagnostic and Therapeutic Techniques and Equipment | Radiology

PubMedID

38343231

Department(s)

Department of Radiology and Diagnostic Medical Imaging

Document Type

Article

Share

COinS