Quantitative three-dimensional echocardiographic analysis of the bicuspid aortic valve and aortic root: A single modality approach.

Publication/Presentation Date

2-1-2020

Abstract

BACKGROUND: Patients with bicuspid aortic valves (BAV) are heterogeneous with regard to patterns of root remodeling and valvular dysfunction. Two-dimensional echocardiography is the standard surveillance modality for patients with aortic valve dysfunction. However, ancillary computed tomography or magnetic resonance imaging is often necessary to characterize associated patterns of aortic root pathology. Conversely, the pairing of three-dimensional (3D) echocardiography with novel quantitative modeling techniques allows for a single modality description of the entire root complex. We sought to determine 3D aortic valve and root geometry with this quantitative approach.

METHODS: Transesophageal real-time 3D echocardiography was performed in five patients with tricuspid aortic valves (TAV) and in five patients with BAV. No patient had evidence of valvular dysfunction or aortic root pathology. A customized image analysis protocol was used to assess 3D aortic annular, valvular, and root geometry.

RESULTS: Annular, sinus and sinotubular junction diameters and areas were similar in both groups. Coaptation length and area were higher in the TAV group (7.25 ±  0.98 mm and 298 ± 118 mm

CONCLUSIONS: Single modality 3D echocardiography-based modeling allows for a quantitative description of the aortic valve and root geometry. This technique together with novel indices will improve our understanding of normal and pathologic geometry in the BAV population and may help to identify geometric predictors of adverse remodeling and guide tailored surgical therapy.

Volume

35

Issue

2

First Page

375

Last Page

382

ISSN

1540-8191

Disciplines

Medicine and Health Sciences

PubMedID

31794089

Department(s)

Department of Medicine, Cardiology Division

Document Type

Article

Share

COinS