Two-dimensional echocardiographic evaluation of the size, function and shape of the left ventricle in chronic aortic regurgitation: comparison with radionuclide angiography.

Publication/Presentation Date



To evaluate the usefulness of two-dimensional echocardiography in asymptomatic or minimally symptomatic patients with significant aortic regurgitation and left ventricular enlargement, left ventricular size and function measurements obtained by a nongeometric technique, gated blood pool radionuclide angiography, were compared with measurements made by several two-dimensional echocardiographic methods in 20 patients. Left ventricular size was best assessed by an apical biplane modified Simpson's rule algorithm obtained by computer-assisted planimetry. For end-diastolic volume, r = 0.95 and standard error of the estimate = 25 ml; for end-systolic volume, r = 0.94 and standard error of the estimate = 16 ml. A newly introduced simplified two-dimensional method obviating the need for planimetry and using multiple axis measurements yielded satisfactory results, although volumes larger than 300 ml were markedly underestimated. Evaluation of volumes from a single minor axis measured directly from two-dimensional images and M-mode tracings obtained under two-dimensional echocardiographic control was inadequate for clinical use. Ejection fraction was correctly assessed by the modified Simpson's rule method as well as by the simplified two-dimensional method (r = 0.81 to 0.83, standard error of the estimate = 7%). However, when methods without planimetry were further simplified, a satisfactory correlation was no longer obtained. The M-mode approach using a corrected cube formula also provided an accurate estimation of ejection fraction, a finding that is attributed to the absence of regional wall motion abnormalities in this group of patients, the ability to locate the M-mode beam more adequately under two-dimensional control and the persistence of an ellipsoidal configuration and a circular cross section in the left ventricular chamber. The data indicate that two-dimensional echocardiography is a valuable approach to the assessment of left ventricular size and function in these patients. Moreover, this approach provides a practical and convenient way of improving M-mode evaluation of function and of determining left ventricular shape, thus permitting adequate selection of geometric algorithms for volume calculations.





First Page


Last Page





Medicine and Health Sciences




Department of Medicine

Document Type