Cholinergic reticular mechanisms influence state-dependent ventilatory response to hypercapnia.

Publication/Presentation Date

9-1-1991

Abstract

Breathing is impaired by the loss of wakefulness that accompanies sleep, certain comatose states, and anesthesia. Although state-dependent decrements in breathing and the ability to respond to hypercapnic stimuli are characteristic of most mammals, the neural mechanisms that cause state-dependent changes in respiratory control remain poorly understood. The present study examined the hypothesis that cholinergic mechanisms in the medial pontine reticular formation (mPRF) can cause state-dependent changes in breathing and in the hypercapnic ventilatory response (HCVR). Six cats were anesthetized with halothane and chronically instrumented for subsequent studies of breathing during wakefulness, non-rapid-eye-movement (NREM) sleep, rapid-eye-movement (REM) sleep, and during the REM sleep-like state caused by mPRF microinjections of carbachol or bethanechol. Minute ventilation was significantly decreased during the carbachol-induced REM sleep-like state (DCarb) compared with wakefulness. The HCVR in NREM, REM, DCarb, and after bethanechol was less than the waking HCVR. These results show for the first time that cholinoceptive regions in the mPRF can cause state-dependent reductions in normocapnic minute ventilation and in the ventilatory response to hypercapnia.

Volume

261

Issue

3 Pt 2

First Page

738

Last Page

746

ISSN

0002-9513

Disciplines

Anesthesiology | Medicine and Health Sciences

PubMedID

1679609

Department(s)

Department of Anesthesiology

Document Type

Article

Share

COinS