Feasibility of in vivo human aortic valve modeling using real-time three-dimensional echocardiography.

Publication/Presentation Date

4-1-2014

Abstract

BACKGROUND: Surgical techniques for aortic valve (AV) repair are directed toward restoring normal structural relationships in the aortic root and rely on detailed assessment of root and valve anatomy. Noninvasive three-dimensional (3D) imaging and modeling may assist in patient selection and operative planning.

METHODS: Transesophageal real-time 3D echocardiographic images of 5 patients with normal AVs were acquired. The aortic root and the annulus were manually segmented at end diastole using a 36-point rotational template. The AV leaflets and the coaptation zone were manually segmented in parallel 1-mm cross sections. Quantitative 3D models of the AV and root were generated and used to measure standard anatomic parameters and were compared to conventional two-dimensional echocardiographic measurements. All measurements are given as mean±SD.

RESULTS: Annular, sinus, and sinotubular junction areas were 4.1±0.6 cm2, 7.5±1.2 cm2, and 3.9±1.0 cm2, respectively. Root diameters (measured in three locations) by 3D model inspection and two-dimensional echocardiography measurement correlated (R2=0.75). Noncoapted areas of the left, right, and noncoronary leaflets were 1.9±0.2 cm2, 1.6±0.3 cm2, and 1.6±0.3 cm2, respectively. Mean coaptation areas for the left-right, left-noncoronary, and right-noncoronary coaptation zones were 87.7±36.9 mm2, 69.9±20.7 mm2, and 114.2±23.0 mm2, respectively. The mean ratio of noncoapted leaflet area to annular area was 1.3±0.2.

CONCLUSIONS: High-resolution 3D models of the in vivo normal human aortic root and valve were generated using 3D echocardiography. Quantitative 3D models and analysis may assist in characterization of pathology and decision making for AV repair.

Volume

97

Issue

4

First Page

1255

Last Page

1258

ISSN

1552-6259

Disciplines

Medicine and Health Sciences

PubMedID

24518577

Department(s)

Department of Medicine, Cardiology Division

Document Type

Article

Share

COinS