MFL-Net: An Efficient Lightweight Multi-Scale Feature Learning CNN for COVID-19 Diagnosis From CT Images.
Publication/Presentation Date
11-1-2022
Abstract
Timely and accurate diagnosis of coronavirus disease 2019 (COVID-19) is crucial in curbing its spread. Slow testing results of reverse transcription-polymerase chain reaction (RT-PCR) and a shortage of test kits have led to consider chest computed tomography (CT) as an alternative screening and diagnostic tool. Many deep learning methods, especially convolutional neural networks (CNNs), have been developed to detect COVID-19 cases from chest CT scans. Most of these models demand a vast number of parameters which often suffer from overfitting in the presence of limited training data. Moreover, the linearly stacked single-branched architecture based models hamper the extraction of multi-scale features, reducing the detection performance. In this paper, to handle these issues, we propose an extremely lightweight CNN with multi-scale feature learning blocks called as MFL-Net. The MFL-Net comprises a sequence of MFL blocks that combines multiple convolutional layers with 3 ×3 filters and residual connections effectively, thereby extracting multi-scale features at different levels and preserving them throughout the block. The model has only 0.78M parameters and requires low computational cost and memory space compared to many ImageNet pretrained CNN architectures. Comprehensive experiments are carried out using two publicly available COVID-19 CT imaging datasets. The results demonstrate that the proposed model achieves higher performance than pretrained CNN models and state-of-the-art methods on both datasets with limited training data despite having an extremely lightweight architecture. The proposed method proves to be an effective aid for the healthcare system in the accurate and timely diagnosis of COVID-19.
Volume
26
Issue
11
First Page
5355
Last Page
5363
ISSN
2168-2208
Published In/Presented At
Joshi, A. M., & Nayak, D. R. (2022). MFL-Net: An Efficient Lightweight Multi-Scale Feature Learning CNN for COVID-19 Diagnosis From CT Images. IEEE journal of biomedical and health informatics, 26(11), 5355–5363. https://doi.org/10.1109/JBHI.2022.3196489
Disciplines
Medicine and Health Sciences
PubMedID
35981061
Department(s)
Department of Medicine, Cardiology Division, Department of Medicine Fellows and Residents, Fellows and Residents
Document Type
Article