Initial Evaluation of Computer-Assisted Radiologic Assessment for Renal Mass Edge Detection as an Indication of Tumor Roughness to Predict Renal Cancer Subtypes.

Publication/Presentation Date

1-1-2019

Abstract

OBJECTIVE: To develop software to assess the potential aggressiveness of an incidentally detected renal mass using images.

METHODS: Thirty randomly selected patients who underwent nephrectomy for renal cell carcinoma (RCC) had their images independently reviewed by engineers. Tumor "Roughness" was based on image algorithm of tumor topographic features visualized on computed tomography (CT) scans. Univariant and multivariant statistical analyses are utilized for analysis.

RESULTS: We investigated 30 subjects that underwent partial or radical nephrectomy. After excluding poor image-rendered images, 27 patients remained (benign cyst = 1, oncocytoma = 2, clear cell RCC = 15, papillary RCC = 7, and chromophobe RCC = 2). The mean roughness score for each mass is 1.18, 1.16, 1.27, 1.52, and 1.56 units, respectively (

CONCLUSION: Using basic CT imaging software, tumor topography ("roughness") can be quantified and correlated with histologies such as RCC subtype and could lead to determining aggressiveness of small renal masses.

Volume

2019

First Page

3590623

Last Page

3590623

ISSN

1687-6369

Disciplines

Medicine and Health Sciences

PubMedID

31164907

Department(s)

Department of Medicine

Document Type

Article

Share

COinS