Participation of the bacteriophage Mu A protein and host factors in the initiation of Mu DNA synthesis in vitro.

Publication/Presentation Date

6-10-1994

Abstract

During bacteriophage Mu transposition, strand transfer is catalyzed in the presence of phage-encoded A and B proteins and Escherichia coli HU protein, attaching Mu ends to target DNA and creating an intermediate in transposition. Bacteriophage Mu A protein, which remains tightly bound to the Mu ends in the native strand-transfer intermediate, blocked initiation of Mu DNA replication by a system of 8 host proteins (DnaB helicase, DnaC protein, DnaG primase, DNA polymerase III holoenzyme, DNA polymerase I, DNA gyrase, DNA ligase, and single-strand binding protein). This 8-protein system had all enzymatic activities to convert the deproteinized intermediate to a cointegrate; however, additional host factor(s) were required to replicate the native intermediate. While replication of the native intermediate absolutely required DnaB helicase, DnaC protein, and DNA polymerase III holoenzyme, the specific requirements were relaxed for the deproteinized intermediate. Other host factors were able to replace these specific factors. These results indicate that Mu A protein, in conjunction with additional host factor(s), acts to promote assembly of specific host replication proteins at the Mu replication fork. This process may alter the stable interaction of Mu A protein with the ends to allow initiation of Mu DNA synthesis.

Volume

269

Issue

23

First Page

16469

Last Page

16477

ISSN

0021-9258

Disciplines

Medicine and Health Sciences

PubMedID

8206956

Department(s)

Department of Medicine

Document Type

Article

Share

COinS