Histone acetylation inhibitors promote axon growth in adult dorsal root ganglia neurons.

Publication/Presentation Date

8-1-2015

Abstract

Intrinsic mechanisms that guide damaged axons to regenerate following spinal cord injury remain poorly understood. Manipulation of posttranslational modifications of key proteins in mature neurons could reinvigorate growth machinery after injury. One such modification is acetylation, a reversible process controlled by two enzyme families, the histone deacetylases (HDACs) and the histone acetyl transferases (HATs), acting in opposition. Whereas acetylated histones in the nucleus are associated with upregulation of growth-promoting genes, deacetylated tubulin in the axoplasm is associated with more labile microtubules, conducive to axon growth. This study investigates the effects of HAT and HDAC inhibitors on cultured adult dorsal root ganglia (DRG) neurons and shows that inhibition of HATs by anacardic acid or CPTH2 improves axon outgrowth, whereas inhibition of HDACs by TSA or tubacin inhibits axon growth. Anacardic acid increased the number of axons able to cross an inhibitory chondroitin sulfate proteoglycan border. Histone acetylation but not tubulin acetylation level was affected by HAT inhibitors, whereas tubulin acetylation levels were increased in the presence of the HDAC inhibitor tubacin. Although the microtubule-stabilizing drug taxol did not have an effect on the lengths of DRG axons, nocodazole decreased axon lengths. Determining the mechanistic basis will require future studies, but this study shows that inhibitors of HAT can augment axon growth in adult DRG neurons, with the potential of aiding axon growth over inhibitory substrates produced by the glial scar.

Volume

93

Issue

8

First Page

1215

Last Page

1228

ISSN

1097-4547

Disciplines

Medicine and Health Sciences

PubMedID

25702820

Department(s)

Department of Medicine, Department of Medicine Fellows and Residents, Fellows and Residents

Document Type

Article

Share

COinS