Ex vivo resuscitation of adult pig hearts.

Publication/Presentation Date

1-1-2003

Abstract

One possible way to expand the human heart donor pool is to include non-heart-beating human donors. To begin validating this approach, we developed an ex vivo cardiac perfusion circuit to support large mammalian hearts in Langendorff mode and beating-ejecting mode and to assess and improve their ischemic tolerance. In vivo hemodynamic data and heparinized blood (4.0 +/- 0.5 L) were collected from 6 anesthetized pigs. Hearts were isolated and connected to a recirculating perfusion circuit primed with autologous buffered blood (pH, 7.40). After retrograde aortic perfusion in Langendorff mode, the left atrium was gravity-filled at 10-20 mmHg, and the left ventricle began to eject against a compliance chamber in series with a systemic reservoir set to a hydraulic afterload of 100-120 mmHg. Left ventricular function was restored and maintained in all 6 hearts for 30 min. Cardiac output, myocardial oxygen consumption, stroke work, aortic pressure, left atrial pressure, and heart rate were measured. The mean myocardial oxygen consumption was 4.8 +/- 2.7 mL/min/100 g (95.8% of in vivo value); and mean stroke work, 5.3 +/- 1.1 g x m/100 g (58.95% of in vivo value). One resuscitated heart was exposed to 30 min of normothermic ischemic arrest, then flushed with Celsior and re-resuscitated. The ex vivo perfusion method described herein restored left ventricular ejection function and allowed assessment of ischemic tolerance in large mammalian hearts, potentially a 1st step toward including non-heart-beating human donors in the human donor pool.

Volume

30

Issue

2

First Page

121

Last Page

127

ISSN

0730-2347

Disciplines

Medicine and Health Sciences

PubMedID

12809253

Department(s)

Department of Medicine

Document Type

Article

Share

COinS