Donor deficiency of decay-accelerating factor accelerates murine T cell-mediated cardiac allograft rejection.

Publication/Presentation Date

10-1-2008

Abstract

Decay-accelerating factor (DAF) is a cell surface regulator that accelerates the dissociation of C3/C5 convertases and thereby prevents the amplification of complement activation on self cells. In the context of transplantation, DAF has been thought to primarily regulate antibody-mediated allograft injury, which is in part serum complement-dependent. Based on our previously delineated link between DAF and CD4 T cell responses, we evaluated the effects of donor Daf1 (the murine homolog of human DAF) deficiency on CD8 T cell-mediated cardiac allograft rejection. MHC-disparate Daf1(-/-) allografts were rejected with accelerated kinetics compared with wild-type grafts. The accelerated rejection predominantly tracked with DAF's absence on bone marrow-derived cells in the graft and required allograft production of C3. Transplantation of Daf1(-/-) hearts into wild-type allogeneic hosts augmented the strength of the anti-donor (direct pathway) T cell response, in part through complement-dependent proliferative and pro-survival effects on alloreactive CD8 T cells. The accelerated allograft rejection of Daf1(-/-) hearts occurred in recipients lacking anti-donor Abs. The results reveal that donor DAF expression, by controlling local complement activation on interacting T cell APC partners, regulates the strength of the direct alloreactive CD8(+) T cell response. The findings provide new insights into links between innate and adaptive immunity that could be exploited to limit T cell-mediated injury to an allograft following transplantation.

Volume

181

Issue

7

First Page

4580

Last Page

4589

ISSN

1550-6606

Disciplines

Medicine and Health Sciences

PubMedID

18802060

Department(s)

Department of Pathology and Laboratory Medicine

Document Type

Article

Share

COinS