Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding.
Publication/Presentation Date
5-17-2007
Abstract
The mammalian hair follicle is a complex 'mini-organ' thought to form only during development; loss of an adult follicle is considered permanent. However, the possibility that hair follicles develop de novo following wounding was raised in studies on rabbits, mice and even humans fifty years ago. Subsequently, these observations were generally discounted because definitive evidence for follicular neogenesis was not presented. Here we show that, after wounding, hair follicles form de novo in genetically normal adult mice. The regenerated hair follicles establish a stem cell population, express known molecular markers of follicle differentiation, produce a hair shaft and progress through all stages of the hair follicle cycle. Lineage analysis demonstrated that the nascent follicles arise from epithelial cells outside of the hair follicle stem cell niche, suggesting that epidermal cells in the wound assume a hair follicle stem cell phenotype. Inhibition of Wnt signalling after re-epithelialization completely abrogates this wounding-induced folliculogenesis, whereas overexpression of Wnt ligand in the epidermis increases the number of regenerated hair follicles. These remarkable regenerative capabilities of the adult support the notion that wounding induces an embryonic phenotype in skin, and that this provides a window for manipulation of hair follicle neogenesis by Wnt proteins. These findings suggest treatments for wounds, hair loss and other degenerative skin disorders.
Volume
447
Issue
7142
First Page
316
Last Page
320
ISSN
1476-4687
Published In/Presented At
Ito, M., Yang, Z., Andl, T., Cui, C., Kim, N., Millar, S. E., & Cotsarelis, G. (2007). Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature, 447(7142), 316–320. https://doi.org/10.1038/nature05766
Disciplines
Medicine and Health Sciences
PubMedID
17507982
Department(s)
Department of Pathology and Laboratory Medicine
Document Type
Article