Optical micro-scale mapping of dynamic biomechanical tissue properties.
Publication/Presentation Date
7-21-2008
Abstract
Mechanical forces such as adhesion, shear stress and compression play crucial roles in tissue growth, patterning and development. To understand the role of these mechanical stimuli, it is of great importance to measure biomechanical properties of developing, engineered, and natural tissues. To enable these measurements on the micro-scale, a novel, dynamic, non-invasive, high-speed optical coherence elastography (OCE) system has been developed utilizing spectral-domain optical coherence tomography (OCT) and a mechanical wave driver. Experimental results of OCE on silicone phantoms are in good agreement with those obtained from a standardized indentation method. Using phase-resolved imaging, we demonstrate OCE can map dynamic elastic moduli of normal and neoplastic ex vivo human breast tissue with a sensitivity of 0.08%. Spatial micro-scale mapping of elastic moduli of tissue offers the potential for basic science and clinical investigations into the role biomechanics play in health and disease.
Volume
16
Issue
15
First Page
11052
Last Page
11065
ISSN
1094-4087
Published In/Presented At
Liang, X., Oldenburg, A. L., Crecea, V., Chaney, E. J., & Boppart, S. A. (2008). Optical micro-scale mapping of dynamic biomechanical tissue properties. Optics express, 16(15), 11052–11065. https://doi.org/10.1364/oe.16.011052
Disciplines
Medicine and Health Sciences | Oncology
PubMedID
18648419
Department(s)
Department of Radiation Oncology
Document Type
Article