Analysis of a Biopsy-Based Genomic Classifier in High-Risk Prostate Cancer: Meta-Analysis of the NRG Oncology/Radiation Therapy Oncology Group 9202, 9413, and 9902 Phase 3 Randomized Trials.
Publication/Presentation Date
7-1-2023
Abstract
PURPOSE: Decipher is a genomic classifier (GC) prospectively validated postprostatectomy. We validated the performance of the GC in pretreatment biopsy samples within the context of 3 randomized phase 3 high-risk definitive radiation therapy trials.
METHODS AND MATERIALS: A prespecified analysis plan (NRG-GU-TS006) was approved to obtain formalin-fixed paraffin-embedded tissue from biopsy specimens from the NRG biobank from patients enrolled in the NRG/Radiation Therapy Oncology Group (RTOG) 9202, 9413, and 9902 phase 3 randomized trials. After central review, the highest-grade tumors were profiled on clinical-grade whole-transcriptome arrays and GC scores were obtained. The primary objective was to validate the independent prognostic ability for the GC for distant metastases (DM), and secondary for prostate cancer-specific mortality (PCSM) and overall survival (OS) with Cox univariable and multivariable analyses.
RESULTS: GC scores were obtained on 385 samples, of which 265 passed microarray quality control (69%) and had a median follow-up of 11 years (interquartile range, 9-13). In the pooled cohort, on univariable analysis, the GC was shown to be a prognostic factor for DM (per 0.1 unit; subdistribution hazard ratio [sHR], 1.29; 95% confidence interval [CI], 1.18-1.41; P < .001), PCSM (sHR, 1.28; 95% CI, 1.16-1.41; P < .001), and OS (hazard ratio [HR], 1.16; 95% CI, 1.08-1.22; P < .001). On multivariable analyses, the GC (per 0.1 unit) was independently associated with DM (sHR, 1.22; 95% CI, 1.09-1.36), PCSM (sHR, 1.23; 95% CI, 1.09-1.39), and OS (HR, 1.12; 95% CI, 1.05-1.20) after adjusting for age, Prostate Specific Antigen, Gleason score, cT stage, trial, and randomized treatment arm. GC had similar prognostic ability in patients receiving short-term or long-term androgen-deprivation therapy, but the absolute improvement in outcome varied by GC risk.
CONCLUSIONS: This is the first validation of a gene expression biomarker on pretreatment prostate cancer biopsy samples from prospective randomized trials and demonstrates an independent association of GC score with DM, PCSM, and OS. High-risk prostate cancer is a heterogeneous disease state, and GC can improve risk stratification to help personalize shared decision making.
Volume
116
Issue
3
First Page
521
Last Page
529
ISSN
1879-355X
Published In/Presented At
Nguyen, P. L., Huang, H. R., Spratt, D. E., Davicioni, E., Sandler, H. M., Shipley, W. U., Efstathiou, J. A., Simko, J. P., Pollack, A., Dicker, A. P., Roach, M., Rosenthal, S. A., Zeitzer, K. L., Mendez, L. C., Hartford, A. C., Hall, W. A., Desai, A. B., Rabinovitch, R. A., Peters, C. A., Rodgers, J. P., … Feng, F. Y. (2023). Analysis of a Biopsy-Based Genomic Classifier in High-Risk Prostate Cancer: Meta-Analysis of the NRG Oncology/Radiation Therapy Oncology Group 9202, 9413, and 9902 Phase 3 Randomized Trials. International journal of radiation oncology, biology, physics, 116(3), 521–529. https://doi.org/10.1016/j.ijrobp.2022.12.035
Disciplines
Medicine and Health Sciences | Oncology
PubMedID
36596347
Department(s)
Department of Radiation Oncology
Document Type
Article