Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses.
Publication/Presentation Date
2-1-2012
Abstract
PURPOSE: To determine whether adding shear-wave (SW) elastographic features could improve accuracy of ultrasonographic (US) assessment of breast masses.
MATERIALS AND METHODS: From September 2008 to September 2010, 958 women consented to repeat standard breast US supplemented by quantitative SW elastographic examination in this prospective multicenter institutional review board-approved, HIPAA-compliant protocol. B-mode Breast Imaging Reporting and Data System (BI-RADS) features and assessments were recorded. SW elastographic evaluation (mean, maximum, and minimum elasticity of stiffest portion of mass and surrounding tissue; lesion-to-fat elasticity ratio; ratio of SW elastographic-to-B-mode lesion diameter or area; SW elastographic lesion shape and homogeneity) was performed. Qualitative color SW elastographic stiffness was assessed independently. Nine hundred thirty-nine masses were analyzable; 102 BI-RADS category 2 masses were assumed to be benign; reference standard was available for 837 category 3 or higher lesions. Considering BI-RADS category 4a or higher as test positive for malignancy, effect of SW elastographic features on area under the receiver operating characteristic curve (AUC), sensitivity, and specificity after reclassifying category 3 and 4a masses was determined.
RESULTS: Median participant age was 50 years; 289 of 939 (30.8%) masses were malignant (median mass size, 12 mm). B-mode BI-RADS AUC was 0.950; eight of 303 (2.6%) BI-RADS category 3 masses, 18 of 193 (9.3%) category 4a lesions, 41 of 97 (42%) category 4b lesions, 42 of 57 (74%) category 4c lesions, and 180 of 187 (96.3%) category 5 lesions were malignant. By using visual color stiffness to selectively upgrade category 3 and lack of stiffness to downgrade category 4a masses, specificity improved from 61.1% (397 of 650) to 78.5% (510 of 650) (P
CONCLUSION: Adding SW elastographic features to BI-RADS feature analysis improved specificity of breast US mass assessment without loss of sensitivity.
Volume
262
Issue
2
First Page
435
Last Page
449
ISSN
1527-1315
Published In/Presented At
Berg, W. A., Cosgrove, D. O., Doré, C. J., Schäfer, F. K., Svensson, W. E., Hooley, R. J., Ohlinger, R., Mendelson, E. B., Balu-Maestro, C., Locatelli, M., Tourasse, C., Cavanaugh, B. C., Juhan, V., Stavros, A. T., Tardivon, A., Gay, J., Henry, J. P., Cohen-Bacrie, C., & BE1 Investigators (2012). Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology, 262(2), 435–449. https://doi.org/10.1148/radiol.11110640
Disciplines
Diagnosis | Medicine and Health Sciences | Other Analytical, Diagnostic and Therapeutic Techniques and Equipment | Radiology
PubMedID
22282182
Department(s)
Department of Radiology and Diagnostic Medical Imaging
Document Type
Article