Regularization of PET reconstruction using multi-scale adaptive thresholding.
Publication/Presentation Date
1-1-2004
Abstract
A multi-scale adaptive thresholding scheme is presented in this study. It was evaluated as a regularization process to filtered back-projection (FBP) for reconstructing clinical PET brain data. Adaptive selection of thresholding operators for each multi-scale sub-band enabled a unified process for noise removal and feature enhancement. A cross-scale regularization process was utilized as an effective signal recovering operator. Together with non-linear thresholding and enhancement operators, they offered remarkable postprocessing to FBP reconstructed data. In addition, such effectiveness was formulated as a regularization process to optimize FBP reconstruction. A comparison study with multiscale regularized FBP (MFBP), standard FBP with clinical settings and iterative reconstruction (OSEM) was reported. The proposed regularization process has shown competitive improvement in the image quality of PET reconstructions when compared to the current state-of-the-art method used in clinical commercial systems (OSEM).
Volume
2004
First Page
1616
Last Page
1619
ISSN
1557-170X
Published In/Presented At
Jin, Y., Esser, P., Aikawa, T., Kuang, B., Duan, S., & Laine, A. (2004). Regularization of PET reconstruction using multi-scale adaptive thresholding. Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2004, 1616–1619. https://doi.org/10.1109/IEMBS.2004.1403490
Disciplines
Diagnosis | Medicine and Health Sciences | Other Analytical, Diagnostic and Therapeutic Techniques and Equipment | Radiology
PubMedID
17272010
Department(s)
Department of Radiology and Diagnostic Medical Imaging
Document Type
Article