Detection of Critical Spinal Epidural Lesions on CT Using Machine Learning.
Publication/Presentation Date
1-1-2023
Abstract
BACKGROUND: Critical spinal epidural pathologies can cause paralysis or death if untreated. Although magnetic resonance imaging is the preferred modality for visualizing these pathologies, computed tomography (CT) occurs far more commonly than magnetic resonance imaging in the clinical setting.
OBJECTIVE: A machine learning model was developed to screen for critical epidural lesions on CT images at a large-scale teleradiology practice. This model has utility for both worklist prioritization of emergent studies and identifying missed findings.
MATERIALS AND METHODS: There were 153 studies with epidural lesions available for training. These lesions were segmented and used to train a machine learning model. A test data set was also created using previously missed epidural lesions. The trained model was then integrated into a teleradiology workflow for 90 days. Studies were sent to secondary manual review if the model detected an epidural lesion but none was mentioned in the clinical report.
RESULTS: The model correctly identified 50.0% of epidural lesions in the test data set with 99.0% specificity. For prospective data, the model correctly prioritized 66.7% of the 18 epidural lesions diagnosed on the initial read with 98.9% specificity. There were 2.0 studies flagged for potential missed findings per day, and 17 missed epidural lesions were found during a 90-day time period. These results suggest almost half of critical spinal epidural lesions visible on CT imaging are being missed on initial diagnosis.
CONCLUSION: A machine learning model for identifying spinal epidural hematomas and abscesses on CT can be implemented in a clinical workflow.
Volume
48
Issue
1
First Page
1
Last Page
7
ISSN
1528-1159
Published In/Presented At
Harris, R. J., Baginski, S. G., Bronstein, Y., Schultze, D., Segel, K., Kim, S., Lohr, J., Towey, S., Shahi, N., Driscoll, I., & Baker, B. (2023). Detection of Critical Spinal Epidural Lesions on CT Using Machine Learning. Spine, 48(1), 1–7. https://doi.org/10.1097/BRS.0000000000004438
Disciplines
Diagnosis | Medicine and Health Sciences | Other Analytical, Diagnostic and Therapeutic Techniques and Equipment | Radiology
PubMedID
35905328
Department(s)
Department of Radiology and Diagnostic Medical Imaging
Document Type
Article