Intracellular and trans-synaptic regulation of glutamatergic synaptogenesis by EphB receptors.
Publication/Presentation Date
11-22-2006
Abstract
The majority of mature excitatory synapses in the CNS are found on dendritic spines and contain AMPA- and NMDA-type glutamate receptors apposed to presynaptic specializations. EphB receptor tyrosine kinase signaling has been implicated in both NMDA-type glutamate receptor clustering and dendritic spine formation, but it remains unclear whether EphB plays a broader role in presynaptic and postsynaptic development. Here, we find that EphB2 is involved in organizing excitatory synapses through the independent activities of particular EphB2 protein domains. We demonstrate that EphB2 controls AMPA-type glutamate receptor localization through PDZ (postsynaptic density-95/Discs large/zona occludens-1) binding domain interactions and triggers presynaptic differentiation via its ephrin binding domain. Knockdown of EphB2 in dissociated neurons results in decreased functional synaptic inputs, spines, and presynaptic specializations. Mice lacking EphB1-EphB3 have reduced numbers of synapses, and defects are rescued with postnatal reexpression of EphB2 in single neurons in brain slice. These results demonstrate that EphB2 acts to control the organization of specific classes of mature glutamatergic synapses.
Volume
26
Issue
47
First Page
12152
Last Page
12164
ISSN
1529-2401
Published In/Presented At
Kayser, M. S., McClelland, A. C., Hughes, E. G., & Dalva, M. B. (2006). Intracellular and trans-synaptic regulation of glutamatergic synaptogenesis by EphB receptors. The Journal of neuroscience : the official journal of the Society for Neuroscience, 26(47), 12152–12164. https://doi.org/10.1523/JNEUROSCI.3072-06.2006
Disciplines
Diagnosis | Medicine and Health Sciences | Other Analytical, Diagnostic and Therapeutic Techniques and Equipment | Radiology
PubMedID
17122040
Department(s)
Department of Radiology and Diagnostic Medical Imaging
Document Type
Article