Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept.
Publication/Presentation Date
3-1-2003
Abstract
OBJECTIVE: We sought to determine whether damage after deep hypothermic circulatory arrest can be diminished by changing pump prime components when reinstituting cardiopulmonary bypass.
METHODS: Fifteen piglets (2-3 months old) were cooled to 19 degrees C by using the alpha-stat pH strategy. Five were cooled and rewarmed without ischemia (control animals), and the other 10 piglets underwent 90 minutes of deep hypothermic circulatory arrest. Of these, 5 were rewarmed and reperfused without altering the cardiopulmonary bypass circuit blood prime. In the other 5 animals, the bypass blood prime was modified (leukocyte depleted, hypocalcemic, hypermagnesemic, pH-stat, normoxic, mannitol, and an Na(+)/H(+) exchange inhibitor) during circulatory arrest before starting warm reperfusion. Oxidant injury was assessed on the basis of conjugated dienes, vascular changes on the basis of endothelin levels, myocardial function on the basis of cardiac output and dopamine need, lung injury on the basis of pulmonary vascular resistance and oxygenation, and cellular damage on the basis of release of creatine kinase and aspartate aminotransferase. Neurologic assessment (score 0, normal; score 500, brain death) was done 6 hours after discontinuing cardiopulmonary bypass.
RESULTS: Compared with animals undergoing cardiopulmonary bypass without ischemia (control animals), deep hypothermic circulatory arrest without modification of the reperfusate produced an oxidant injury (conjugated dienes increased 0.78 vs 1.71 absorbance (Abs) 240 nmol/L per 0.5 mL, P
CONCLUSIONS: A global reperfusion injury after deep hypothermic circulatory arrest was identified and changed. The injury is mediated by oxygen-derived free radicals, resulting in organ and endothelial dysfunction. Modification of global organ and endothelial damage is achieved by modifying the blood prime in the cardiopulmonary bypass circuit to deliver a controlled global reperfusate when reinstituting bypass.
Volume
125
Issue
3
First Page
625
Last Page
632
ISSN
0022-5223
Published In/Presented At
Allen, B. S., Veluz, J. S., Buckberg, G. D., Aeberhard, E., & Ignarro, L. J. (2003). Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept. The Journal of thoracic and cardiovascular surgery, 125(3), 625–632. https://doi.org/10.1067/mtc.2003.96
Disciplines
Medicine and Health Sciences
PubMedID
12658205
Department(s)
Department of Surgery
Document Type
Article