Multi-atlas segmentation with robust label transfer and label fusion.
Publication/Presentation Date
1-1-2013
Abstract
Multi-atlas segmentation has been widely applied in medical image analysis. This technique relies on image registration to transfer segmentation labels from pre-labeled atlases to a novel target image and applies label fusion to reduce errors produced by registration-based label transfer. To improve the performance of registration-based label transfer against registration errors, our first contribution is to propose a label transfer scheme that generates multiple warped versions of each atlas to one target image through registration paths obtained by composing inter-atlas registrations and atlas-target registrations. The problem of decreasing quality of warped atlases caused by accumulative errors in composing multiple registrations is properly addressed by an atlas selection method that is guided by atlas segmentations. To improve the performance of label fusion against registration errors, our second contribution is to integrate the probabilistic correspondence model employed by the non-local mean approach with the joint label fusion technique, both of which have shown excellent performance for label fusion. Experiments on mitral-valve segmentation in 3D transesophageal echocardiography (TEE) show the effectiveness of the proposed techniques.
Volume
23
First Page
548
Last Page
559
ISSN
1011-2499
Published In/Presented At
Wang, H., Pouch, A., Takabe, M., Jackson, B., Gorman, J., Gorman, R., & Yushkevich, P. A. (2013). Multi-atlas segmentation with robust label transfer and label fusion. Information processing in medical imaging : proceedings of the ... conference, 23, 548–559. https://doi.org/10.1007/978-3-642-38868-2_46
Disciplines
Medicine and Health Sciences
PubMedID
24683998
Department(s)
Department of Surgery
Document Type
Article