Sustained release of engineered stromal cell-derived factor 1-α from injectable hydrogels effectively recruits endothelial progenitor cells and preserves ventricular function after myocardial infarction.

Publication/Presentation Date

9-10-2013

Abstract

BACKGROUND: Exogenously delivered chemokines have enabled neovasculogenic myocardial repair in models of ischemic cardiomyopathy; however, these molecules have short half-lives in vivo. In this study, we hypothesized that the sustained delivery of a synthetic analog of stromal cell-derived factor 1-α (engineered stromal cell-derived factor analog [ESA]) induces continuous homing of endothelial progenitor cells and improves left ventricular function in a rat model of myocardial infarction.

METHODS AND RESULTS: Our previously designed ESA peptide was synthesized by the addition of a fluorophore tag for tracking. Hyaluronic acid was chemically modified with hydroxyethyl methacrylate to form hydrolytically degradable hydrogels through free-radical-initiated crosslinking. ESA was encapsulated in hyaluronic acid hydrogels during gel formation, and then ESA release, along with gel degradation, was monitored for more than 4 weeks in vitro. Chemotactic properties of the eluted ESA were assessed at multiple time points using rat endothelial progenitor cells in a transwell migration assay. Finally, adult male Wistar rats (n=33) underwent permanent ligation of the left anterior descending (LAD) coronary artery, and 100 µL of saline, hydrogel alone, or hydrogel+25 µg ESA was injected into the borderzone. ESA fluorescence was monitored in animals for more than 4 weeks, after which vasculogenic, geometric, and functional parameters were assessed to determine the therapeutic benefit of each treatment group. ESA release was sustained for 4 weeks in vitro, remained active, and enhanced endothelial progenitor cell chemotaxis. In addition, ESA was detected in the rat heart >3 weeks when delivered within the hydrogels and significantly improved vascularity, ventricular geometry, ejection fraction, cardiac output, and contractility compared with controls.

CONCLUSIONS: We have developed a hydrogel delivery system that sustains the release of a bioactive endothelial progenitor cell chemokine during a 4-week period that preserves ventricular function in a rat model of myocardial infarction.

Volume

128

Issue

11 Suppl 1

First Page

79

Last Page

86

ISSN

1524-4539

Disciplines

Medicine and Health Sciences

PubMedID

24030424

Department(s)

Department of Surgery

Document Type

Article

Share

COinS