Genetically engineered fixed K562 cells: potent "off-the-shelf" antigen-presenting cells for generating virus-specific T cells.

Publication/Presentation Date

1-1-2014

Abstract

BACKGROUND AIMS: The human leukemia cell line K562 represents an attractive platform for creating artificial antigen-presenting cells (aAPC). It is readily expandable, does not express human leukocyte antigen (HLA) class I and II and can be stably transduced with various genes.

METHODS: In order to generate cytomegalovirus (CMV) antigen-specific T cells for adoptive immunotherapy, we transduced K562 with HLA-A∗0201 in combination with co-stimulatory molecules.

RESULTS: In preliminary experiments, irradiated K562 expressing HLA-A∗0201 and 4-1BBL pulsed with CMV pp65 and IE-1 peptide libraries failed to elicit antigen-specific CD8⁺ T cells in HLA-A∗0201⁺ peripheral blood mononuclear cells (PBMC) or isolated T cells. Both wild-type K562 and aAPC strongly inhibited T cell proliferation to the bacterial superantigen staphylococcal enterotoxin B (SEB) and OKT3 and in mixed lymphocyte reaction (MLR). Transwell experiments suggested that suppression was mediated by a soluble factor; however, MLR inhibition was not reversed using transforming growth factor-β blocking antibody or prostaglandin E2 inhibitors. Full abrogation of the suppressive activity of K562 on MLR, SEB and OKT3 stimulation was only achieved by brief fixation with 0.1% formaldehyde. Fixed, pp65 and IE-1 peptide-loaded aAPC induced robust expansion of CMV-specific T cells.

CONCLUSIONS: Fixed gene-modified K562 can serve as effective aAPC to expand CMV-specific cytotoxic T lymphocytes for therapeutic use in patients after stem cell transplantation. Our findings have implications for broader understanding of the immune evasion mechanisms used by leukemia and other tumors.

Volume

16

Issue

1

First Page

135

Last Page

146

ISSN

1477-2566

Disciplines

Medicine and Health Sciences

PubMedID

24176543

Department(s)

Fellows and Residents

Document Type

Article

Share

COinS