Structural and functional analysis of the Pig-a protein that is mutated in paroxysmal nocturnal hemoglobinuria.

Publication/Presentation Date

12-1-1997

Abstract

There is now convincing evidence that the Pig-a gene is mutated in patients with paroxysmal nocturnal hemoglobinuria (PNH), a disease in which one or more clones of hematopoietic cells have incomplete assembly of glycosylphosphatidylinositol (GPI) anchors and absence of GPI-linked protein expression on the cell surface. Little is known, however, about the Pig-a protein product that is necessary for GPI anchor bioassembly. Relatively few substitution (missense) Pig-a gene mutations have been identified, but we noted two apparent clusters at codons 128-129 and 151-156 and hypothesized that these might represent critical regions of the Pig-a protein. We therefore used site-directed mutagenesis to create conservative mutations in the Pig-a protein, then performed structural and functional analysis. Each Pig-a mutation generated a Pig-a protein of normal size and stability, but certain mutations had substantial deleterious effects on protein function. Conservative mutation of codons histidine 128 (H128), serine 129 (S129), and serine 155 (S155) had greatly diminished function, while mutations of flanking residues had no effect on function. Our results represent the first structure/function analysis of the Pig-a protein, and suggest that codons H128, S129, and S155 represent critical regions of the Pig-a protein. Our results also suggest a means by which transgenic mice with a "partial knock-out" of Pig-a function could be generated, which would allow investigation of PNH in an animal model.

Volume

23

Issue

3

First Page

350

Last Page

360

ISSN

1079-9796

Disciplines

Psychiatry

PubMedID

9398536

Department(s)

Department of Psychiatry

Document Type

Article

Share

COinS