Biomechanical properties of in vivo human skin from dynamic optical coherence elastography.
Publication/Presentation Date
4-1-2010
Abstract
Dynamic optical coherence elastography is used to determine in vivo skin biomechanical properties based on mechanical surface wave propagation. Quantitative Young's moduli are measured on human skin from different sites, orientations, and frequencies. Skin thicknesses, including measurements from different layers, are also measured simultaneously. Experimental results show significant differences among measurements from different skin sites, between directions parallel and orthogonal to Langer's lines, and under different skin hydration states. Results also suggest surface waves with different driving frequencies represent skin biomechanical properties from different layers in depth. With features such as micrometer-scale resolution, noninvasive imaging, and real-time processing from the optical coherence tomography technology, this optical measurement technique has great potential for measuring skin biomechanical properties in dermatology.
Volume
57
Issue
4
First Page
953
Last Page
959
ISSN
1558-2531
Published In/Presented At
Liang, X., & Boppart, S. A. (2010). Biomechanical properties of in vivo human skin from dynamic optical coherence elastography. IEEE transactions on bio-medical engineering, 57(4), 953–959. https://doi.org/10.1109/TBME.2009.2033464
Disciplines
Medicine and Health Sciences | Oncology
PubMedID
19822464
Department(s)
Department of Radiation Oncology
Document Type
Article