Alterations in ionized and total blood magnesium after experimental traumatic brain injury: relationship to neurobehavioral outcome and neuroprotective efficacy of magnesium chloride.
Publication/Presentation Date
7-1-1999
Abstract
Experimental evidence suggests that magnesium plays a role in the pathophysiological sequelae of brain injury. The present study examined the variation of blood ionized and total magnesium, as well as potassium, sodium, and ionized calcium, after experimental fluid percussion brain injury in rats. Blood ionized magnesium concentration significantly declined from 0.45 +/- 0.02 to 0.32 +/- 0.02 mM by 30 min postinjury and stayed depressed for the 24-h study period in vehicle-treated rats. Blood total magnesium concentration was 0.59 +/- 0.01 mM and remained stable over time in brain-injured vehicle-treated animals. When magnesium chloride (125 micromol/rat) was administered 1 h postinjury, ionized magnesium levels were restored by 2 h postinjury and remained at normal values up to 24 h following brain trauma. Magnesium treatment also significantly reduced posttraumatic neuromotor impairments 1 and 2 weeks after the insult, but failed to attenuate spatial learning deficits. A significant positive and linear correlation could be established between ionized magnesium levels measured 24 h postinjury and neuromotor outcome at 1 and 2 weeks. We conclude that acute ionized magnesium measurement may be a predictor of long-term neurobehavioral outcome following head injury and that delayed administration of magnesium chloride can restore blood magnesium concentration and attenuate neurological motor deficits in brain-injured rats.
Volume
73
Issue
1
First Page
271
Last Page
280
ISSN
0022-3042
Published In/Presented At
Bareyre, F. M., Saatman, K. E., Helfaer, M. A., Sinson, G., Weisser, J. D., Brown, A. L., & McIntosh, T. K. (1999). Alterations in ionized and total blood magnesium after experimental traumatic brain injury: relationship to neurobehavioral outcome and neuroprotective efficacy of magnesium chloride. Journal of neurochemistry, 73(1), 271–280. https://doi.org/10.1046/j.1471-4159.1999.0730271.x
Disciplines
Medicine and Health Sciences | Pediatrics
PubMedID
10386980
Department(s)
Department of Pediatrics
Document Type
Article