Disulfide-dependent multimeric assembly of resistin family hormones.

Publication/Presentation Date

5-21-2004

Abstract

Resistin, founding member of the resistin-like molecule (RELM) hormone family, is secreted selectively from adipocytes and induces liver-specific antagonism of insulin action, thus providing a potential molecular link between obesity and diabetes. Crystal structures of resistin and RELMbeta reveal an unusual multimeric structure. Each protomer comprises a carboxy-terminal disulfide-rich beta-sandwich "head" domain and an amino-terminal alpha-helical "tail" segment. The alpha-helical segments associate to form three-stranded coiled coils, and surface-exposed interchain disulfide linkages mediate the formation of tail-to-tail hexamers. Analysis of serum samples shows that resistin circulates in two distinct assembly states, likely corresponding to hexamers and trimers. Infusion of a resistin mutant, lacking the intertrimer disulfide bonds, in pancreatic-insulin clamp studies reveals substantially more potent effects on hepatic insulin sensitivity than those observed with wild-type resistin. This result suggests that processing of the intertrimer disulfide bonds may reflect an obligatory step toward activation.

Volume

304

Issue

5674

First Page

1154

Last Page

1158

ISSN

1095-9203

Disciplines

Medicine and Health Sciences | Pediatrics

PubMedID

15155948

Department(s)

Department of Pediatrics

Document Type

Article

Share

COinS