The dose-response relationship for hypoxic pulmonary vasoconstriction.

Publication/Presentation Date

5-1-1994

Abstract

In 12 pentobarbital anesthetized dogs the lungs were independently ventilated with a double piston ventilator. The right lung was ventilated throughout with 100% oxygen. Blood was drawn from the right atrium and pumped through a bubble oxygenator to a cannula in the ligated left main pulmonary artery. The pressures in the left main pulmonary artery and the left atrium were recorded during constant flow while the oxygen tension in the left lung alveolar gas and the perfusate were varied either to match each other (Protocol 1) or differ (Protocol 2) over the range from "zero" to "100%" oxygen. From the combined data a three dimensional response surface for hypoxic pulmonary vasoconstriction was derived. The maximum increase of pulmonary vascular resistance (r%PVRmax) was defined at a stimulus oxygen tension (PSO2) of 10 mmHg amounting to a 3.15 +/- (0.18)-fold increase of the vascular resistance on "100%" oxygen. The stimulus oxygen tension was shown to be PSO2 = PVO2(0.41) x PAO2(0.59) and the dose-response sigmoid for hypoxic pulmonary vasoconstriction in canine lungs was derived as r%PVRmax = 100 (PSO2(-2.616))/(6.683 x 10(-5) + PSO2(-2.616)) These results appear to reconcile observations from a number of laboratories and to be of quite general application.

Volume

96

Issue

2-3

First Page

231

Last Page

247

ISSN

0034-5687

Disciplines

Medicine and Health Sciences | Pediatrics

PubMedID

8059086

Department(s)

Department of Pediatrics

Document Type

Article

Share

COinS