Assessment of Beta-2 Microglobulin Gene Edited Airway Epithelial Stem Cells as a treatment for Sulfur Mustard Inhalation.
Publication/Presentation Date
1-1-2022
Abstract
Respiratory system damage is the primary cause of mortality in individuals who are exposed to vesicating agents including sulfur mustard (SM). Despite these devastating health complications, there are no fielded therapeutics that are specific for such injuries. Previous studies reported that SM inhalation depleted the tracheobronchial airway epithelial stem cell (TSC) pool and supported the hypothesis, TSC replacement will restore airway epithelial integrity and improve health outcomes for SM-exposed individuals. TSC express Major Histocompatibility Complex (MHC-I) transplantation antigens which increases the chance that allogeneic TSC will be rejected by the patient's immune system. However, previous studies reported that Beta-2 microglobulin (B2M) knockout cells lacked cell surface MHC-I and suggested that B2M knockout TSC would be tolerated as an allogeneic graft. This study used a Cas9 ribonucleoprotein (RNP) to generate B2M-knockout TSC, which are termed Universal Donor Stem Cells (UDSC). Whole genome sequencing identified few off-target modifications and demonstrated the specificity of the RNP approach. Functional assays demonstrated that UDSC retained their ability to self-renew and undergo multilineage differentiation. A preclinical model of SM inhalation was used to test UDSC efficacy and identify any treatment-associated adverse events. Adult male Sprague-Dawley rats were administered an inhaled dose of 0.8 mg/kg SM vapor which is the inhaled LD
Volume
4
First Page
781531
Last Page
781531
ISSN
2673-3439
Published In/Presented At
Naeimi Kararoudi, M., Alsudayri, A., Hill, C. L., Elmas, E., Sezgin, Y., Thakkar, A., Hester, M. E., Malleske, D. T., Lee, D. A., Neal, M. L., Perry, M. R., Harvilchuck, J. A., & Reynolds, S. D. (2022). Assessment of Beta-2 Microglobulin Gene Edited Airway Epithelial Stem Cells as a treatment for Sulfur Mustard Inhalation. Frontiers in genome editing, 4, 781531. https://doi.org/10.3389/fgeed.2022.781531
Disciplines
Medicine and Health Sciences | Pediatrics
PubMedID
35199100
Department(s)
Department of Pediatrics
Document Type
Article