Properties of a progesterone-induced relaxation in human placental arteries and veins.

Publication/Presentation Date

2-1-1995

Abstract

To study the effects of progesterone on placental vascular tone, we used isolated (1-2 mm in diameter) placental arteries and veins from term uncomplicated pregnancies. These vessels, incubated in Krebs buffer (pH 7.4) under 5% O2-5% CO2 (balance N2, PO2 approximately 35 torr) and precontracted with serotonin were exposed to incremental doses of progesterone (0.01-30 mumol/L) in the presence or absence of endothelium, 10 mumol/L indomethacin (inhibits prostaglandin synthesis), 10 mumol/L methylene blue (a soluble guanylate cyclase inhibitor), 100 mumol/L nitro-L-arginine (inhibits L-arginine metabolism), 1 mmol/L isobutylmethylxanthine (a cAMP phosphodiesterase inhibitor), or 30 mumol/L mifepristone (RU 38486, an antiprogestin). Progesterone elicited an acute dose-dependent relaxation in both arteries and veins that was not altered by removal of the endothelium or pretreatment with indomethacin, nitro-L-arginine, or methylene blue, excluding a role for prostaglandins, L-arginine products, or cGMP in mediating this relaxation. However, isobutylmethylxanthine significantly enhanced the relaxation in response to progesterone, suggesting a role for cAMP. RU 38486 inhibited the relaxation by 50-100%, depending on the progesterone dose, consistent with a role for progesterone receptors. These results suggest that progesterone causes a dose-dependent endothelium-independent relaxation of human placental arteries and veins. This relaxation seems to be mediated by a receptor-activated cAMP mechanism and could be physiologically important in maintaining low resistance and adequate blood flow in the placental circulation.

Volume

80

Issue

2

First Page

370

Last Page

373

ISSN

0021-972X

Disciplines

Medicine and Health Sciences | Pediatrics

PubMedID

7852492

Department(s)

Department of Pediatrics

Document Type

Article

Share

COinS