Neonatal CPR: room at the Top--A Mathematical Study of Optimal Chest Compression Frequency Versus Body Size.
Publication/Presentation Date
11-1-2009
Abstract
OBJECTIVE: To explore in detail the expected magnitude of systemic perfusion pressure during standard CPR as a function of compression frequency for different sized people from neonate to adult.
METHOD: A 7-compartment mathematical model of the human cardiopulmonary system - upgraded to include inertance of blood columns in the aorta and vena cavae - was exercised with parameters scaled to reflect changes in body weight from 1 to 70 kg.
RESULTS: Maximal systemic perfusion pressure occurs at chest compression rates near 60, 120, 180, and 250/min for subjects weighing 70, 10, 3, and 1 kg, respectively. Such maxima are predicted by analytical models describing the dependence of stroke volume on pump-filling time in the presence of blood inertia. This mathematical analysis reproduces earlier experimental results of Fitzgerald et al. in 10 kg dogs.
CONCLUSIONS: Fundamental geometry and physics suggest that the most effective chest compression frequency in CPR depends upon body size and weight. In neonates there is room for improvement at the top of the compression frequency scale at rates >120/min. In adults there may be benefit from lower compression frequencies near 60/min.
Volume
80
Issue
11
First Page
1280
Last Page
1284
ISSN
1873-1570
Published In/Presented At
Babbs, C., Meyer, A., & Nadkarni, V. (2009). Neonatal CPR: room at the top--a mathematical study of optimal chest compression frequency versus body size. Resuscitation, 80(11), 1280-1284. doi:10.1016/j.resuscitation.2009.07.014
Disciplines
Medicine and Health Sciences | Pediatrics
PubMedID
19713026
LVHN link
http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=19713026&site=ehost-live&scope=site
Peer Reviewed for front end display
Peer-Reviewed
Department(s)
Department of Pediatrics Faculty, Department of Pediatrics Residents
Document Type
Article